Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA.
J Mol Biol. 2011 Apr 8;407(4):607-20. doi: 10.1016/j.jmb.2011.01.036. Epub 2011 Jan 28.
Prevention of cation permeation in wild-type aquaporin-1 (AQP1) is believed to be associated with the Asn-Pro-Ala (NPA) region and the aromatic/arginine selectivity filter (SF) domain. Previous work has suggested that the NPA region helps to impede proton permeation due to the protein backbone collective macrodipoles that create an environment favoring a directionally discontinuous channel hydrogen-bonded water chain and a large electrostatic barrier. The SF domain contributes to the proton permeation barrier by a spatial restriction mechanism and direct electrostatic interactions. To further explore these various effects, the free-energy barriers and the maximum cation conductance for the permeation of various cations through the AQP1-R195V and AQP1-R195S mutants are predicted computationally. The cations studied included the hydrated excess proton that utilizes the Grotthuss shuttling mechanism, a model "classical" charge localized hydronium cation that exhibits no Grotthuss shuttling, and a sodium cation. The hydrated excess proton was simulated using a specialized multi-state molecular dynamics method including a proper physical treatment of the proton shuttling and charge defect delocalization. Both AQP1 mutants exhibit a surprising cooperative effect leading to a reduction in the free-energy barrier for proton permeation around the NPA region due to altered water configurations in the SF region, with AQP1-R195S having a higher conductance than AQP1-R195V. The theoretical predictions are experimentally confirmed in wild-type AQP1 and the mutants expressed in Xenopus oocytes. The combined results suggest that the SF domain is a specialized structure that has evolved to impede proton permeation in aquaporins.
野生型水通道蛋白-1(AQP1)的阳离子渗透的防止被认为与 Asn-Pro-Ala(NPA)区域和芳香族/精氨酸选择性过滤器(SF)结构域有关。先前的工作表明,由于蛋白质骨架的集体宏观偶极子,NPA 区域有助于阻碍质子渗透,这些偶极子创造了有利于具有非连续通道氢键水链和大静电势垒的环境。SF 结构域通过空间限制机制和直接静电相互作用对质子渗透势垒做出贡献。为了进一步探索这些不同的效应,通过计算预测了各种阳离子通过 AQP1-R195V 和 AQP1-R195S 突变体渗透的自由能势垒和最大阳离子电导率。所研究的阳离子包括利用 Grotthuss 穿梭机制的水合过剩质子、表现出无 Grotthuss 穿梭的模型“经典”局部化质子化阳离子和钠离子。利用特殊的多态分子动力学方法模拟了水合过剩质子,该方法包括对质子穿梭和电荷缺陷离域的适当物理处理。两种 AQP1 突变体都表现出一种令人惊讶的协同效应,导致由于 SF 区域中水分子构型的改变,NPA 区域中质子渗透的自由能势垒降低,其中 AQP1-R195S 的电导率高于 AQP1-R195V。理论预测在野生型 AQP1 和在非洲爪蟾卵母细胞中表达的突变体中得到了实验验证。综合结果表明,SF 结构域是一种专门的结构,已经进化为阻碍水通道蛋白中的质子渗透。