Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany.
Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
Protein Sci. 2022 Oct;31(10):e4431. doi: 10.1002/pro.4431.
The water permeability of aquaporins (AQPs) varies by more than an order of magnitude even though the pore structure, geometry, as well as the channel lining residues are highly conserved. However, channel gating by pH, divalent ions or phosphorylation was only shown for a minority of AQPs. Structural and in silico indications of water flux modulation by flexible side chains of channel lining residues have not been experimentally confirmed yet. Hence, the aquaporin "open state" is still considered to be a continuously open pore with water molecules permeating in a single-file fashion. Using protein mutations outside the selectivity filter in the aqua(glycerol)facilitator GlpF of Escherichia coli we, to the best of our knowledge, for the first time, modulate the position of the highly conserved Arg in the selectivity filter. This in turn enhances or reduces the unitary water permeability of GlpF as shown in silico by molecular dynamics (MD) simulations and in vitro with purified and reconstituted GlpF. This finding suggests that AQP water permeability can indeed be regulated by lipid bilayer asymmetry and the transmembrane potential. Strikingly, our long-term MD simulations reveal that not only the conserved Arg in the selectivity filter, but the position and dynamics of multiple other pore lining residues modulate water passage through GlpF. This finding is expected to trigger a wealth of future investigations on permeability and regulation of AQPs among others with the aim to tune water permeability for biotechnological applications.
水通道蛋白(AQP)的水透过率变化超过一个数量级,尽管其孔结构、几何形状以及通道衬里残基高度保守。然而,只有少数 AQP 被证明可以通过 pH、二价离子或磷酸化来进行通道门控。结构和计算机模拟表明,通道衬里残基的柔性侧链可以调节水通量,但尚未通过实验证实。因此,水通道蛋白的“开放状态”仍被认为是一个连续开放的孔,水分子以单分子形式渗透。我们利用大肠杆菌水(甘油)通道促进剂 GlpF 的选择性过滤器外的蛋白质突变,在我们所知的范围内,首次调节了高度保守的选择性过滤器中的 Arg 的位置。这反过来又增强或降低了 GlpF 的单位水透过率,这在计算机模拟中通过分子动力学(MD)模拟和体外纯化和重组 GlpF 得到证实。这一发现表明,AQP 的水透过率确实可以通过脂质双层不对称性和跨膜电位来调节。引人注目的是,我们的长期 MD 模拟表明,不仅是选择性过滤器中的保守 Arg,还有多个其他孔衬里残基的位置和动力学,都可以调节 GlpF 中的水通过。这一发现有望引发大量未来对 AQP 的渗透性和调节的研究,目的是调整水渗透性以用于生物技术应用。