Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
Appl Environ Microbiol. 2011 Mar;77(6):2088-93. doi: 10.1128/AEM.02548-10. Epub 2011 Jan 28.
The mutation G143A in the inhibitor binding site of cytochrome b confers a high level of resistance to fungicides targeting the bc(1) complex. The mutation, reported in many plant-pathogenic fungi, has not evolved in fungi that harbor an intron immediately after the codon for G143 in the cytochrome b gene, intron bi2. Using Saccharomyces cerevisiae as a model organism, we show here that a codon change from GGT to GCT, which replaces glycine 143 with alanine, hinders the splicing of bi2 by altering the exon/intron structure needed for efficient intron excision. This lowers the levels of cytochrome b and respiratory growth. We then investigated possible bypass mechanisms that would restore the respiratory fitness of a resistant mutant. Secondary mutations in the mitochondrial genome were found, including a point mutation in bi2 restoring the correct exon/intron structure and the deletion of intron bi2. We also found that overexpression of nuclear genes MRS2 and MRS3, encoding mitochondrial metal ion carriers, partially restores the respiratory growth of the G143A mutant. Interestingly, the MRS3 gene from the plant-pathogenic fungus Botrytis cinerea, overexpressed in an S. cerevisiae G143A mutant, had a similar compensatory effect. These bypass mechanisms identified in yeast could potentially arise in pathogenic fungi.
G143A 突变位于细胞色素 b 的抑制剂结合位点,赋予了真菌对靶向 bc(1)复合物的杀菌剂的高水平抗性。该突变已在许多植物病原真菌中报道,但在那些在细胞色素 b 基因中 G143 密码子之后立即携带内含子的真菌中并未进化,该内含子为 bi2。在这里,我们使用酿酒酵母作为模型生物,表明从 GGT 到 GCT 的密码子变化,用丙氨酸取代甘氨酸 143,通过改变有效内含子切除所需的exon/intron 结构,阻碍了 bi2 的剪接。这降低了细胞色素 b 和呼吸生长的水平。然后,我们研究了可能恢复抗性突变体呼吸适应性的旁路机制。在线粒体基因组中发现了次要突变,包括 bi2 中的点突变,该突变恢复了正确的 exon/intron 结构,并删除了内含子 bi2。我们还发现,编码线粒体金属离子载体的核基因 MRS2 和 MRS3 的过表达部分恢复了 G143A 突变体的呼吸生长。有趣的是,来自植物病原真菌 Botrytis cinerea 的 MRS3 基因在酿酒酵母 G143A 突变体中的过表达具有类似的补偿作用。在酵母中鉴定出的这些旁路机制可能会在病原真菌中出现。