Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
J Chem Phys. 2011 Jan 28;134(4):044706. doi: 10.1063/1.3509386.
Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.
采用密度泛函理论分子动力学研究了同构 TiO(2)金红石(110)和 SnO(2)锡石(110)表面水合层中的质子跳跃过程。我们发现,与金红石相比,锡石上的质子跳跃速率快了三倍以上。基于 O-H 振动伸缩带与氢键强度之间的相关性的局部分析表明,锡石上更快的质子跳跃活性是由表面与表面上方水合层之间更强的氢键形成产生的。锡石中氢键强度增加的原因是由于其电子结构的差异导致的更强的共价键和更强的静电相互作用的综合效应。桥氧在表面和水合层之间形成最强的氢键。这种更高的质子跳跃速率可能会影响表面的反应性和催化活性。更好地理解其起源将使控制这些速率的方法成为可能。