Center for Bioinformatics, University of Kansas, Lawrence, Kansas; Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas.
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2011 Feb 2;100(3):611-619. doi: 10.1016/j.bpj.2010.12.3708.
It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC1; PDB:2K4T) embedded in an implicit membrane. When the MD-derived, space-dependent diffusion constant was used in the GCMC/BD simulations, the current-voltage characteristics and ion number profiles inside the pore showed excellent agreement with those calculated from all-atom molecular-dynamics (MD) simulations, thereby validating the GCMC/BD approach. Of the 20 NMR models of hVDAC1 currently available, the third one (NMR03) best reproduces both experimental single-channel conductance and ion selectivity (i.e., the reversal potential). In addition, detailed analyses of the ion trajectories, one-dimensional multi-ion potential of mean force, and protein charge distribution reveal that electrostatic interactions play an important role in the channel structure and ion transport relationship. Finally, the GCMC/BD simulations of various mutants based on NMR03 show good agreement with experimental ion selectivity. The difference in ion selectivity between the wild-type and the mutants is the result of altered potential of mean force profiles that are dominated by the electrostatic interactions.
了解电压依赖性阴离子通道 (VDAC) 中的离子传输对于理解离子传输非常重要,因为该通道为细胞质和线粒体之间的代谢物和电解质提供了主要的渗透途径。我们进行了巨正则蒙特卡罗/布朗动力学 (GCMC/BD) 模拟,以探索嵌入在隐式膜中的人 VDAC 同工型 1 (hVDAC1; PDB:2K4T) 的离子传输特性。当在 GCMC/BD 模拟中使用 MD 衍生的空间相关扩散常数时,孔内的电流-电压特性和离子数量分布与从全原子分子动力学 (MD) 模拟计算出的特性非常吻合,从而验证了 GCMC/BD 方法。在目前可用的 20 个 hVDAC1 的 NMR 模型中,第三个模型 (NMR03) 最好地再现了实验中单通道电导和离子选择性(即反转电位)。此外,对离子轨迹、一维多离子平均力势和蛋白质电荷分布的详细分析表明,静电相互作用在通道结构和离子传输关系中起着重要作用。最后,基于 NMR03 的各种突变体的 GCMC/BD 模拟与实验离子选择性吻合良好。野生型和突变体之间离子选择性的差异是由平均力势分布的变化引起的,这主要是由静电相互作用主导的。