Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas.
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2011 Feb 2;100(3):602-610. doi: 10.1016/j.bpj.2010.12.3711.
The voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria serves an essential role in the transport of metabolites and electrolytes between the cell matrix and mitochondria. To examine its structure, dynamics, and the mechanisms underlying its electrophysiological properties, we performed a total of 1.77 μs molecular dynamics simulations of human VDAC isoform 1 in DOPE/DOPC mixed bilayers in 1 M KCl solution with transmembrane potentials of 0, ±25, ±50, ±75, and ±100 mV. The calculated conductance and ion selectivity are in good agreement with the experimental measurements. In addition, ion density distributions inside the channel reveal possible pathways for different ion species. Based on these observations, a mechanism underlying the anion selectivity is proposed; both ion species are transported across the channel, but the rate for K(+) is smaller than that for Cl(-) because of the attractive interactions between K(+) and residues on the channel wall. This difference leads to the anion selectivity of VDAC.
线粒体外膜中的电压依赖性阴离子通道 (VDAC) 在细胞基质和线粒体之间的代谢物和电解质转运中起着至关重要的作用。为了研究其结构、动态以及电生理特性的机制,我们对人源 VDAC 1 亚型在 DOPE/DOPC 混合双层膜中的结构进行了总计 1.77 μs 的分子动力学模拟,模拟条件为 1 M KCl 溶液中存在 0、±25、±50、±75 和 ±100 mV 的跨膜电位。计算出的电导率和离子选择性与实验测量结果非常吻合。此外,通道内的离子密度分布揭示了不同离子种类可能的传输途径。基于这些观察结果,提出了一种阴离子选择性的机制;两种离子都可以穿过通道,但由于 K(+)与通道壁上的残基之间存在吸引力相互作用,K(+)的传输速率小于 Cl(-),这导致了 VDAC 的阴离子选择性。