Suppr超能文献

VDAC 的静电特性:对选择性和门控的影响。

The electrostatics of VDAC: implications for selectivity and gating.

机构信息

Carnegie Mellon-University of Pittsburgh Program in Computational Biology, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

J Mol Biol. 2010 Feb 26;396(3):580-92. doi: 10.1016/j.jmb.2009.12.006. Epub 2009 Dec 11.

Abstract

The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from electrostatics calculations carried out on the recently determined high-resolution structure of murine VDAC1 (mVDAC1). Poisson-Boltzmann calculations show that the ion transfer free energy through the channel is favorable for anions, suggesting that mVDAC1 represents the open state. This claim is buttressed by Poisson-Nernst-Planck calculations that predict a high single-channel conductance indicative of the open state and an anion selectivity of 1.75--nearly a twofold selectivity for anions over cations. These calculations were repeated on mutant channels and gave selectivity changes in accord with experimental observations. We were then able to engineer an in silico mutant channel with three point mutations that converted mVDAC1 into a channel with a preference for cations. Finally, we investigated two proposals for how the channel gates between the open and the closed state. Both models involve the movement of the N-terminal helix, but neither motion produced the observed voltage sensitivity, nor did either model result in a cation-selective channel, which is observed experimentally. Thus, we were able to rule out certain models for channel gating, but the true motion has yet to be determined.

摘要

电压依赖性阴离子通道(VDAC)是介导代谢物和离子穿过线粒体外膜的主要途径。通道在开放状态下的两个特点是高代谢物通量和阴离子选择性,而部分关闭状态则阻止代谢物并具有阳离子选择性。在这里,我们报告了对最近确定的高分辨率鼠源 VDAC1(mVDAC1)结构进行静电计算的结果。泊松-玻尔兹曼计算表明,离子通过通道的转移自由能有利于阴离子,这表明 mVDAC1 代表开放状态。这一说法得到泊松-纳恩斯特-普朗克计算的支持,该计算预测了一个高单通道电导,表明处于开放状态,并且阴离子选择性为 1.75--阴离子对阳离子的选择性几乎是两倍。对突变通道进行了重复计算,并得到了与实验观察一致的选择性变化。然后,我们能够通过三个点突变在计算机上构建一个突变通道,使 mVDAC1 成为对阳离子有偏好的通道。最后,我们研究了通道在开放和关闭状态之间门控的两种方案。这两种模型都涉及到 N 端螺旋的运动,但这两种运动都没有产生观察到的电压敏感性,也没有产生实验观察到的阳离子选择性通道。因此,我们能够排除某些通道门控模型,但真实的运动仍有待确定。

相似文献

1
The electrostatics of VDAC: implications for selectivity and gating.
J Mol Biol. 2010 Feb 26;396(3):580-92. doi: 10.1016/j.jmb.2009.12.006. Epub 2009 Dec 11.
2
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. doi: 10.1073/pnas.0809634105. Epub 2008 Nov 6.
4
Concentration dependent ion selectivity in VDAC: a molecular dynamics simulation study.
PLoS One. 2011;6(12):e27994. doi: 10.1371/journal.pone.0027994. Epub 2011 Dec 2.
5
Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1.
Nat Struct Mol Biol. 2014 Jul;21(7):626-32. doi: 10.1038/nsmb.2841. Epub 2014 Jun 8.
6
Assessing the role of residue E73 and lipid headgroup charge in VDAC1 voltage gating.
Biochim Biophys Acta Bioenerg. 2019 Jan;1860(1):22-29. doi: 10.1016/j.bbabio.2018.11.001. Epub 2018 Nov 6.
7
Affixing N-terminal α-helix to the wall of the voltage-dependent anion channel does not prevent its voltage gating.
J Biol Chem. 2012 Mar 30;287(14):11437-45. doi: 10.1074/jbc.M111.314229. Epub 2012 Jan 24.
8
Molecular origin of VDAC selectivity towards inorganic ions: a combined molecular and Brownian dynamics study.
Biochim Biophys Acta. 2013 Apr;1828(4):1284-92. doi: 10.1016/j.bbamem.2012.12.018. Epub 2013 Jan 9.
9
Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation.
Channels (Austin). 2009 May-Jun;3(3):167-70. doi: 10.4161/chan.3.3.9196. Epub 2009 May 15.
10
The mitochondrial channel VDAC has a cation-selective open state.
Biochim Biophys Acta. 2005 Dec 20;1710(2-3):96-102. doi: 10.1016/j.bbabio.2005.09.006. Epub 2005 Oct 26.

引用本文的文献

1
Insights into VDAC Gating: Room-Temperature X-ray Crystal Structure of mVDAC-1.
Biomolecules. 2024 Sep 24;14(10):1203. doi: 10.3390/biom14101203.
2
The Name Is Barrel, β-Barrel.
Methods Mol Biol. 2024;2778:1-30. doi: 10.1007/978-1-0716-3734-0_1.
3
Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets.
Int J Mol Sci. 2023 Jul 28;24(15):12095. doi: 10.3390/ijms241512095.
4
The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating.
J Am Chem Soc. 2022 Aug 17;144(32):14564-14577. doi: 10.1021/jacs.2c03316. Epub 2022 Aug 4.
5
Small molecules targeting the NADH-binding pocket of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells.
Biomed Pharmacother. 2022 Jun;150:112928. doi: 10.1016/j.biopha.2022.112928. Epub 2022 Apr 18.
6
VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges.
Front Physiol. 2021 Sep 29;12:742839. doi: 10.3389/fphys.2021.742839. eCollection 2021.
7
The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration.
Int J Mol Sci. 2021 Mar 16;22(6):3034. doi: 10.3390/ijms22063034.
8
Outer membrane protein evolution.
Curr Opin Struct Biol. 2021 Jun;68:122-128. doi: 10.1016/j.sbi.2021.01.002. Epub 2021 Jan 22.
10
Insights Into the Role of Mitochondrial Ion Channels in Inflammatory Response.
Front Physiol. 2020 Apr 9;11:258. doi: 10.3389/fphys.2020.00258. eCollection 2020.

本文引用的文献

1
Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation.
Channels (Austin). 2009 May-Jun;3(3):167-70. doi: 10.4161/chan.3.3.9196. Epub 2009 May 15.
2
Probing the orientation of yeast VDAC1 in vivo.
FEBS Lett. 2009 Feb 18;583(4):739-42. doi: 10.1016/j.febslet.2009.01.039. Epub 2009 Jan 29.
3
Opening and closing the metabolite gate.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19565-6. doi: 10.1073/pnas.0810654106. Epub 2008 Dec 10.
4
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. doi: 10.1073/pnas.0809634105. Epub 2008 Nov 6.
5
Structure of the human voltage-dependent anion channel.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15370-5. doi: 10.1073/pnas.0808115105. Epub 2008 Oct 1.
6
Solution structure of the integral human membrane protein VDAC-1 in detergent micelles.
Science. 2008 Aug 29;321(5893):1206-10. doi: 10.1126/science.1161302.
7
Disruption of the hexokinase-VDAC complex for tumor therapy.
Oncogene. 2008 Aug 7;27(34):4633-5. doi: 10.1038/onc.2008.114. Epub 2008 May 12.
8
CHARMM-GUI: a web-based graphical user interface for CHARMM.
J Comput Chem. 2008 Aug;29(11):1859-65. doi: 10.1002/jcc.20945.
9
The supramolecular assemblies of voltage-dependent anion channels in the native membrane.
J Mol Biol. 2007 Jul 6;370(2):246-55. doi: 10.1016/j.jmb.2007.04.073. Epub 2007 May 10.
10
Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation.
Science. 2006 Nov 10;314(5801):1004-7. doi: 10.1126/science.1133415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验