Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK.
Neuroimage. 2011 May 15;56(2):411-21. doi: 10.1016/j.neuroimage.2011.01.061. Epub 2011 Jan 31.
Pattern-information analysis has become an important new paradigm in functional imaging. Here I review and compare existing approaches with a focus on the question of what we can learn from them in terms of brain theory. The most popular and widespread method is stimulus decoding by response-pattern classification. This approach addresses the question whether activity patterns in a given region carry information about the stimulus category. Pattern classification uses generic models of the stimulus-response relationship that do not mimic brain information processing and treats the stimulus space as categorical-a simplification that is often helpful, but also limiting in terms of the questions that can be addressed. We can address the question whether representations are consistent across different stimulus sets or tasks by cross-decoding, where the classifier is trained with one set of stimuli (or task) and tested with another. Beyond pattern classification, a major new direction is the integration of computational models of brain information processing into pattern-information analysis. This approach enables us to address the question to what extent competing computational models are consistent with the stimulus representations in a brain region. Two methods that test computational models are voxel receptive-field modeling and representational similarity analysis. These methods sample the stimulus (or mental-state) space more richly, estimate a separate response pattern for each stimulus, and can generalize from the stimulus sample to a stimulus population. Computational models that mimic brain information processing predict responses from stimuli. The reverse transform can be modeled to reconstruct stimuli from responses. Stimulus reconstruction is a challenging feat of engineering, but the implications of the results for brain theory are not always clear. Exploratory pattern analyses complement the confirmatory approaches mentioned so far and can reveal strong, unexpected effects that might be missed when testing only a restricted set of predefined hypotheses.
模式信息分析已经成为功能成像中的一个重要新范例。在这里,我回顾并比较了现有的方法,重点关注从这些方法中我们可以在大脑理论方面学到什么的问题。最流行和广泛使用的方法是通过响应模式分类来进行刺激解码。这种方法解决了在给定区域中的活动模式是否携带有关刺激类别的信息的问题。模式分类使用的是不模拟大脑信息处理的刺激-反应关系的通用模型,并将刺激空间视为分类的——这种简化在处理问题时通常很有帮助,但也有限制。我们可以通过交叉解码来解决表示是否在不同的刺激集或任务中一致的问题,其中分类器是用一组刺激(或任务)进行训练,并用另一组刺激(或任务)进行测试。除了模式分类之外,一个主要的新方向是将大脑信息处理的计算模型集成到模式信息分析中。这种方法使我们能够解决竞争的计算模型在多大程度上与大脑区域中的刺激表示一致的问题。两种测试计算模型的方法是体素感受野建模和表示相似性分析。这些方法更丰富地采样刺激(或心理状态)空间,为每个刺激估计单独的响应模式,并可以从刺激样本推广到刺激群体。模拟大脑信息处理的计算模型可以根据刺激来预测响应。相反的变换可以建模为从响应重建刺激。刺激重建是一项具有挑战性的工程壮举,但结果对大脑理论的影响并不总是清楚。探索性的模式分析补充了前面提到的验证性方法,可以揭示出在仅测试一组有限的预定义假设时可能会错过的强烈、意外的影响。