Suppr超能文献

极化视觉背后机制的分子基础。

The molecular basis of mechanisms underlying polarization vision.

机构信息

School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):627-37. doi: 10.1098/rstb.2010.0206.

Abstract

The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.

摘要

极化敏感性 (PS) 的潜在机制长期以来一直难以捉摸。对于视杆状光感受器,实验测量的高 PS 水平仍存在疑问。在纤毛状光感受器中,特别是在锥体中,几乎没有直接证据支持任何类型的机制。为了促进人们对偏振视觉这些基本方面的更大兴趣,我们研究了一系列将膜生物化学、蛋白质-蛋白质相互作用、分子有序性和膜相行为联系起来的不同研究。虽然这些研究最初似乎与偏振视觉无关,但出现了一个共同的叙述。大量证据表明,蛋白质-蛋白质相互作用在视杆状和纤毛状光感受器中都很重要,这表明视蛋白的可能长程有序排列可以提高 PS。此外,我们通过考虑这种蛋白准晶组织如何从受控的膜相行为出现在所有细胞类型中来扩展这个方向,并提出了一个在视杆状和锥体光感受器中发生 PS 的通用途径。

相似文献

1
The molecular basis of mechanisms underlying polarization vision.极化视觉背后机制的分子基础。
Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):627-37. doi: 10.1098/rstb.2010.0206.
5
Molecular mechanisms characterizing cone photoresponses.表征视锥细胞光反应的分子机制。
Photochem Photobiol. 2007 Jan-Feb;83(1):19-26. doi: 10.1562/2006-02-28-IR-823.
10
Rod and cone photoreceptors: molecular basis of the difference in their physiology.视杆和视锥光感受器:它们生理差异的分子基础。
Comp Biochem Physiol A Mol Integr Physiol. 2008 Aug;150(4):369-77. doi: 10.1016/j.cbpa.2008.04.600. Epub 2008 Apr 26.

引用本文的文献

1
Neural responses to light stimulation in the octopus arm.章鱼触腕对光刺激的神经反应。
J Exp Biol. 2025 Apr 1;228(7). doi: 10.1242/jeb.250111. Epub 2025 Mar 31.
3
The sky compass network in the brain of the desert locust.大脑中的沙漠蝗“天空罗盘”网络。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):641-662. doi: 10.1007/s00359-022-01601-x. Epub 2022 Dec 23.
4
Insect opsins and evo-devo: what have we learned in 25 years?昆虫视蛋白与演化发育:25 年来我们学到了什么?
Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210288. doi: 10.1098/rstb.2021.0288. Epub 2022 Sep 5.
5
Thresholds of polarization vision in octopuses.章鱼的极化视觉阈值。
J Exp Biol. 2021 Apr 1;224(7). doi: 10.1242/jeb.240812. Epub 2021 Apr 15.
7
Exceptional diversity of opsin expression patterns in (Stomatopoda) retinas.(十足目)复眼中视蛋白表达模式的非凡多样性。
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8948-8957. doi: 10.1073/pnas.1917303117. Epub 2020 Apr 2.
8
The Eye of the Common Octopus ().普通章鱼的眼睛()。
Front Physiol. 2020 Jan 14;10:1637. doi: 10.3389/fphys.2019.01637. eCollection 2019.

本文引用的文献

5
Molecular diversity of visual pigments in Stomatopoda (Crustacea).口足目(甲壳纲)视觉色素的分子多样性
Vis Neurosci. 2009 May-Jun;26(3):255-65. doi: 10.1017/S0952523809090129. Epub 2009 Jun 18.
6
Crystal structure of squid rhodopsin.鱿鱼视紫红质的晶体结构。
Nature. 2008 May 15;453(7193):363-7. doi: 10.1038/nature06925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验