Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007, Lyon, France.
BMIC Graduate Programme, Université de Lyon, Lyon, France.
BMC Biol. 2019 Aug 15;17(1):67. doi: 10.1186/s12915-019-0676-y.
Arthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. Yet our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruit fly Drosophila melanogaster. Here, we describe the visual system of Parhyale hawaiensis, an amphipod crustacean for which we have established tailored genetic tools.
Adult Parhyale have apposition-type compound eyes made up of ~ 50 ommatidia. Each ommatidium contains four photoreceptor cells with large rhabdomeres (R1-4), expected to be sensitive to the polarisation of light, and one photoreceptor cell with a smaller rhabdomere (R5). The two types of photoreceptors express different opsins, belonging to families with distinct wavelength sensitivities. Using the cis-regulatory regions of opsin genes, we established transgenic reporters expressed in each photoreceptor cell type. Based on these reporters, we show that R1-4 and R5 photoreceptors extend axons to the first optic lobe neuropil, revealing striking differences compared with the photoreceptor projections found in related crustaceans and insects. Investigating visual function, we show that Parhyale have a positive phototactic response and are capable of adapting their eyes to different levels of light intensity.
We propose that the visual system of Parhyale serves low-resolution visual tasks, such as orientation and navigation, based on broad gradients of light intensity and polarisation. Optic lobe structure and photoreceptor projections point to significant divergence from the typical organisation found in other malacostracan crustaceans and insects, which could be associated with a shift to low-resolution vision. Our study provides the foundation for research in the visual system of this genetically tractable species.
节肢动物的眼睛在进化过程中已经多样化,以满足多种需求,例如寻找配偶、捕食猎物以及在不同光照条件下的复杂环境中导航。这种多样性反映在视觉的光学仪器、光感受器和神经回路中。然而,我们操纵视觉系统以研究其功能的能力在很大程度上仅限于一种物种,即黑腹果蝇。在这里,我们描述了 Parhyale hawaiensis 的视觉系统,我们已经为其建立了专门的遗传工具。
成年 Parhyale 具有由~50 个小眼组成的重叠型复眼。每个小眼包含四个光感受器细胞,具有大的光感受器(R1-4),预计对光的偏振敏感,以及一个具有较小光感受器(R5)的光感受器细胞。这两种类型的光感受器表达不同的视蛋白,属于具有不同波长敏感性的家族。使用视蛋白基因的顺式调控区,我们建立了在每种光感受器细胞类型中表达的转基因报告器。基于这些报告器,我们表明 R1-4 和 R5 光感受器将轴突延伸到第一视神经叶神经丛,与在相关甲壳类动物和昆虫中发现的光感受器投射相比,显示出惊人的差异。研究视觉功能,我们表明 Parhyale 具有正趋光性反应,并能够适应不同强度的光。
我们提出,Parhyale 的视觉系统基于广泛的光强和偏振梯度,服务于低分辨率的视觉任务,例如定向和导航。视神经叶结构和光感受器投射表明与其他软甲纲甲壳动物和昆虫的典型组织存在显著差异,这可能与低分辨率视觉的转变有关。我们的研究为这个遗传上易于操作的物种的视觉系统研究提供了基础。