Suppr超能文献

XMAP215 聚合酶的活性是通过结合多个微管结合 TOG 结构域和一个基本晶格结合区域构建而成的。

XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2741-6. doi: 10.1073/pnas.1016498108. Epub 2011 Jan 31.

Abstract

XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215's overall affinity for free tubulin. The mutants' overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a "bonsai" protein, with two TOG domains and a basic region, that has almost full polymerase activity.

摘要

XMAP215/Dis1 家族蛋白正向调节微管生长。其 N 端的重复序列,称为 TOG 结构域,对该功能很重要。虽然 TOG 结构域直接结合微管二聚体,但这种相互作用如何转化为聚合酶活性尚不清楚。理解 TOG 结构域的功能作用进一步复杂化,因为不同物种的蛋白质中存在的这些结构域的数量不同。在这里,我们利用最近来自秀丽隐杆线虫的第三 TOG 结构域 Zyg9 的晶体结构,并突变 XMAP215 中每个 TOG 结构域中预测对与微管二聚体相互作用很重要的关键残基。我们确定了各个 TOG 结构域对微管生长的贡献。我们表明,TOG 结构域绝对需要结合游离的微管,并且这些结构域对 XMAP215 对游离微管的整体亲和力有不同的贡献。突变体对游离微管的整体亲和力与聚合酶活性很好地相关。此外,我们证明了另一个碱性区域对于靶向微管晶格很重要,并且对于 XMAP215 在生理浓度下发挥功能至关重要。利用这些信息,我们设计了一种“盆景”蛋白,具有两个 TOG 结构域和一个碱性区域,具有几乎完全的聚合酶活性。

相似文献

1
XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2741-6. doi: 10.1073/pnas.1016498108. Epub 2011 Jan 31.
4
Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1.
PLoS One. 2019 Jul 19;14(7):e0219823. doi: 10.1371/journal.pone.0219823. eCollection 2019.
5
The role of TOG domains in microtubule plus end dynamics.
Biochem Soc Trans. 2009 Oct;37(Pt 5):1002-6. doi: 10.1042/BST0371002.
6
The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array.
Mol Biol Cell. 2014 Aug 15;25(16):2375-92. doi: 10.1091/mbc.E13-08-0501. Epub 2014 Jun 25.
8
The structure of the TOG-like domain of Drosophila melanogaster Mast/Orbit.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):723-9. doi: 10.1107/S1744309113015182. Epub 2013 Jun 27.
9
Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP.
Trends Cell Biol. 2011 Oct;21(10):604-14. doi: 10.1016/j.tcb.2011.06.007. Epub 2011 Jul 23.
10
XMAP215 is a processive microtubule polymerase.
Cell. 2008 Jan 11;132(1):79-88. doi: 10.1016/j.cell.2007.11.043.

引用本文的文献

1
A biochemical mechanism for Stu2/XMAP215-family microtubule polymerases.
bioRxiv. 2025 Jun 10:2025.06.09.658552. doi: 10.1101/2025.06.09.658552.
3
Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202406061. Epub 2025 Jan 23.
4
The TOG5 domain of CKAP5 is required to interact with F-actin and promote microtubule advancement in neurons.
Mol Biol Cell. 2024 Dec 1;35(12):br24. doi: 10.1091/mbc.E24-05-0202. Epub 2024 Nov 6.
5
Functional specificity in biomolecular condensates revealed by genetic complementation.
Nat Rev Genet. 2025 Apr;26(4):279-290. doi: 10.1038/s41576-024-00780-4. Epub 2024 Oct 21.
6
Mechanism of how the universal module XMAP215 γ-TuRC nucleates microtubules.
bioRxiv. 2024 Jun 3:2024.06.03.597159. doi: 10.1101/2024.06.03.597159.
7
CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC.
Nat Cell Biol. 2024 Mar;26(3):404-420. doi: 10.1038/s41556-024-01366-2. Epub 2024 Feb 29.
8
CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules.
Curr Biol. 2024 Jan 22;34(2):260-272.e7. doi: 10.1016/j.cub.2023.11.031. Epub 2023 Dec 11.
10
MAPping tubulin mutations.
Front Cell Dev Biol. 2023 Feb 15;11:1136699. doi: 10.3389/fcell.2023.1136699. eCollection 2023.

本文引用的文献

1
Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
Methods Cell Biol. 2010;95:221-45. doi: 10.1016/S0091-679X(10)95013-9.
2
Review of the mechanism of processive actin filament elongation by formins.
Cell Motil Cytoskeleton. 2009 Aug;66(8):606-17. doi: 10.1002/cm.20379.
5
XMAP215 is a processive microtubule polymerase.
Cell. 2008 Jan 11;132(1):79-88. doi: 10.1016/j.cell.2007.11.043.
6
Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1.
Mol Cell. 2007 Sep 21;27(6):976-91. doi: 10.1016/j.molcel.2007.07.023.
7
Mechanism and function of formins in the control of actin assembly.
Annu Rev Biochem. 2007;76:593-627. doi: 10.1146/annurev.biochem.75.103004.142647.
9
Microtubule polymerases and depolymerases.
Curr Opin Cell Biol. 2007 Feb;19(1):31-5. doi: 10.1016/j.ceb.2006.12.009. Epub 2006 Dec 20.
10
Assembly dynamics of microtubules at molecular resolution.
Nature. 2006 Aug 10;442(7103):709-12. doi: 10.1038/nature04928. Epub 2006 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验