Suppr超能文献

CDC25 磷酸酶对肠道上皮干细胞和祖细胞增殖的贡献。

Contributions made by CDC25 phosphatases to proliferation of intestinal epithelial stem and progenitor cells.

机构信息

Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, United States of America.

出版信息

PLoS One. 2011 Jan 25;6(1):e15561. doi: 10.1371/journal.pone.0015561.

Abstract

The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells.

摘要

CDC25 蛋白磷酸酶通过激活细胞周期依赖性蛋白激酶 (CDKs) 推动细胞周期前进。人类和小鼠分别编码三个家族成员,分别表示为 CDC25A、-B 和 -C,并且可以单独破坏这些家族成员的编码基因,而在成年小鼠中几乎没有表型后果。然而,所有三种磷酸酶在 Cdc25 破坏后一周内,成年小鼠会全球死亡。在这些小鼠的小肠中观察到由于隐窝上皮细胞不能增殖而导致吸收绒毛严重丧失。由于 Cdc25 被全局删除,因此小肠表型和动物活力丧失不能仅仅归因于小肠干细胞和祖细胞不能分裂的内在缺陷。在这里,我们报告了在肠上皮细胞中特异性删除不同组合的 Cdc25 的后果。然后将这些小鼠出现的表型与那些在 Cdc25 全局缺失的小鼠和用伊立替康治疗的小鼠(一种常用于治疗结直肠癌的化疗药物)出现的表型进行比较。我们报告说,在 Cdc25 全局缺失的小鼠中出现的表型是由于小肠干细胞和祖细胞不能增殖所致,而通过抑制细胞周期引擎(通过 Cdc25 缺失)而不是通过诱导 DNA 损伤(通过伊立替康)来阻止细胞分裂会引起小肠上皮细胞的反应明显不同。最后,我们证明 CDC25A 和 CDC25B 但不是 CDC25C 可以相互补偿,以维持肠上皮干细胞和祖细胞的增殖能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c9/3026785/f66eca1a4e26/pone.0015561.g001.jpg

相似文献

2
Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4701-6. doi: 10.1073/pnas.0900751106. Epub 2009 Mar 9.
3
Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases.
Mol Cell Biol. 2005 Apr;25(7):2853-60. doi: 10.1128/MCB.25.7.2853-2860.2005.
4
Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase.
Mol Cell Biol. 2001 Jun;21(12):3853-61. doi: 10.1128/MCB.21.12.3853-3861.2001.
5
In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets.
Anticancer Agents Med Chem. 2008 Dec;8(8):832-6. doi: 10.2174/187152008786847693.
6
[Role of CDC25 phosphatases in the control of proliferation].
Pathol Biol (Paris). 2000 Apr;48(3):182-9.
8
Cell cycle regulation by the Cdc25 phosphatase family.
Prog Cell Cycle Res. 2000;4:107-14. doi: 10.1007/978-1-4615-4253-7_10.
10
Downregulation of CDC25C in NPCs Disturbed Cortical Neurogenesis.
Int J Mol Sci. 2023 Jan 12;24(2):1505. doi: 10.3390/ijms24021505.

引用本文的文献

1
Emerging Therapeutic Agents for Colorectal Cancer.
Molecules. 2021 Dec 9;26(24):7463. doi: 10.3390/molecules26247463.
2
Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine.
Cell Rep. 2021 Nov 23;37(8):110044. doi: 10.1016/j.celrep.2021.110044.
3
Multi-Epitope-Based Vaccines for Colon Cancer Treatment and Prevention.
Front Immunol. 2021 Aug 30;12:729809. doi: 10.3389/fimmu.2021.729809. eCollection 2021.
4
APC/C Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity.
Curr Biol. 2017 May 22;27(10):1462-1476.e5. doi: 10.1016/j.cub.2017.04.023. Epub 2017 May 11.
5
The G2 checkpoint-a node-based molecular switch.
FEBS Open Bio. 2017 Mar 4;7(4):439-455. doi: 10.1002/2211-5463.12206. eCollection 2017 Apr.
6
Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7148-54. doi: 10.1073/pnas.1509249112. Epub 2015 Dec 7.
7
Kizuna is a novel mitotic substrate for CDC25B phosphatase.
Cell Cycle. 2014;13(24):3867-77. doi: 10.4161/15384101.2014.972882.
9
Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes.
J Biol Chem. 2014 Jun 27;289(26):18033-44. doi: 10.1074/jbc.M113.541953. Epub 2014 May 12.
10
MicroRNAs in Vascular Biology.
Int J Vasc Med. 2012;2012:794898. doi: 10.1155/2012/794898. Epub 2012 Sep 26.

本文引用的文献

1
Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4701-6. doi: 10.1073/pnas.0900751106. Epub 2009 Mar 9.
2
Cell cycle control by the CDC25 phosphatases.
Anticancer Agents Med Chem. 2008 Dec;8(8):818-24. doi: 10.2174/187152008786847756.
3
TSCOT+ thymic epithelial cell-mediated sensitive CD4 tolerance by direct presentation.
PLoS Biol. 2008 Aug 5;6(8):e191. doi: 10.1371/journal.pbio.0060191.
4
Irinotecan in the treatment of colorectal cancer.
Cancer Treat Rev. 2006 Nov;32(7):491-503. doi: 10.1016/j.ctrv.2006.07.001. Epub 2006 Sep 7.
5
Wnt signaling in the intestinal epithelium: from endoderm to cancer.
Genes Dev. 2005 Apr 15;19(8):877-90. doi: 10.1101/gad.1295405.
6
Wnt signalling induces maturation of Paneth cells in intestinal crypts.
Nat Cell Biol. 2005 Apr;7(4):381-6. doi: 10.1038/ncb1240. Epub 2005 Mar 20.
7
Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases.
Mol Cell Biol. 2005 Apr;25(7):2853-60. doi: 10.1128/MCB.25.7.2853-2860.2005.
8
Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine.
Development. 2005 Mar;132(6):1443-51. doi: 10.1242/dev.01700. Epub 2005 Feb 16.
9
Signaling pathways in intestinal development and cancer.
Annu Rev Cell Dev Biol. 2004;20:695-723. doi: 10.1146/annurev.cellbio.20.010403.092805.
10
New approaches to prevent intestinal toxicity of irinotecan-based regimens.
Cancer Treat Rev. 2004 Oct;30(6):555-62. doi: 10.1016/j.ctrv.2004.05.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验