Suppr超能文献

芯片上使用锥形光纤面板的广角无透镜荧光显微镜。

Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.

机构信息

Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.

出版信息

Analyst. 2011 Sep 7;136(17):3512-8. doi: 10.1039/c0an00926a. Epub 2011 Jan 31.

Abstract

We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.

摘要

我们展示了一种无透镜荧光显微镜,其视场约为 60mm²,空间分辨率小于 4µm。在这种片上荧光成像模式中,样品放置在光纤面板上,该光纤面板逐渐变细,使得上表面的光纤波导密度比下表面大 5 倍以上。将荧光样品放置在这个锥形的光纤面板上,通过玻璃半球形界面从侧面泵浦。在激发样品后,通过在样品基底的下表面发生全内反射来拒绝泵浦光。然后,通过锥形光纤面板的较小端收集来自样品的荧光发射,并将其传输到光电传感器阵列进行数字采样。使用压缩采样算法,我们对这些原始无透镜图像进行解码,以验证使用微粒子以及标记的鼠贾第虫囊包作为模型的这种片上荧光成像平台的分辨率(<4µm)。这种宽视场无透镜荧光显微镜平台具有紧凑和高通量的特点,可能为细胞术、稀有细胞分析(涉及大面积微流控系统)以及微阵列成像应用提供一种有价值的工具。

相似文献

1
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Analyst. 2011 Sep 7;136(17):3512-8. doi: 10.1039/c0an00926a. Epub 2011 Jan 31.
2
Lensless fluorescent on-chip microscopy using a fiber-optic taper.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5981-4. doi: 10.1109/IEMBS.2011.6091478.
3
Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects.
Opt Express. 2010 May 10;18(10):10510-23. doi: 10.1364/OE.18.010510.
4
Lensless fluorescent microscopy on a chip.
J Vis Exp. 2011 Aug 17(54):3181. doi: 10.3791/3181.
6
Cost-effective and compact wide-field fluorescent imaging on a cell-phone.
Lab Chip. 2011 Jan 21;11(2):315-22. doi: 10.1039/c0lc00358a. Epub 2010 Nov 9.
7
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Lab Chip. 2013 Oct 21;13(20):4015-23. doi: 10.1039/c3lc50589h. Epub 2013 Aug 12.
9
Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.
Lab Chip. 2011 Apr 7;11(7):1276-9. doi: 10.1039/c0lc00684j. Epub 2011 Mar 1.
10
Field-portable lensfree tomographic microscope.
Lab Chip. 2011 Jul 7;11(13):2222-30. doi: 10.1039/c1lc20127a. Epub 2011 May 16.

引用本文的文献

2
Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis.
Cells. 2022 Nov 18;11(22):3670. doi: 10.3390/cells11223670.
5
A super-resolution scanning algorithm for lensless microfluidic imaging using the dual-line array image sensor.
PLoS One. 2020 Jun 25;15(6):e0235111. doi: 10.1371/journal.pone.0235111. eCollection 2020.
6
Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters.
Biomed Opt Express. 2018 Aug 17;9(9):4329-4344. doi: 10.1364/BOE.9.004329. eCollection 2018 Sep 1.
7
High-Precision Lens-Less Flow Cytometer on a Chip.
Micromachines (Basel). 2018 May 10;9(5):227. doi: 10.3390/mi9050227.
8
Microfluidic Based Optical Microscopes on Chip.
Cytometry A. 2018 Oct;93(10):987-996. doi: 10.1002/cyto.a.23589. Epub 2018 Sep 13.
9
Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics.
Curr Opin Biomed Eng. 2017 Mar;1:45-53. doi: 10.1016/j.cobme.2017.03.001. Epub 2017 Mar 22.
10
Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
Anal Biochem. 2017 Aug 15;531:20-36. doi: 10.1016/j.ab.2017.05.020. Epub 2017 May 17.

本文引用的文献

1
Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7. doi: 10.1073/pnas.1012539107. Epub 2010 Oct 7.
2
Fourier-transform holographic microscope.
Appl Opt. 1992 Aug 20;31(24):4973-8. doi: 10.1364/AO.31.004973.
3
Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.
Opt Express. 2010 May 24;18(11):11181-91. doi: 10.1364/OE.18.011181.
4
Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects.
Opt Express. 2010 May 10;18(10):10510-23. doi: 10.1364/OE.18.010510.
5
Lensfree microscopy on a cellphone.
Lab Chip. 2010 Jul 21;10(14):1787-92. doi: 10.1039/c003477k. Epub 2010 May 6.
7
Wide field-of-view lens-free fluorescent imaging on a chip.
Lab Chip. 2010 Apr 7;10(7):824-7. doi: 10.1039/b926561a. Epub 2010 Feb 25.
8
A practical guide to single-molecule FRET.
Nat Methods. 2008 Jun;5(6):507-16. doi: 10.1038/nmeth.1208.
9
Isolation of rare circulating tumour cells in cancer patients by microchip technology.
Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385.
10
Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip.
Lab Chip. 2006 Oct;6(10):1274-6. doi: 10.1039/b604676b. Epub 2006 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验