Suppr超能文献

GWAS 联盟中的表型协调和跨研究合作:GENEVA 的经验。

Phenotype harmonization and cross-study collaboration in GWAS consortia: the GENEVA experience.

机构信息

Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, Washington 98115, USA.

出版信息

Genet Epidemiol. 2011 Apr;35(3):159-73. doi: 10.1002/gepi.20564. Epub 2011 Jan 31.

Abstract

Genome-wide association study (GWAS) consortia and collaborations formed to detect genetic loci for common phenotypes or investigate gene-environment (G*E) interactions are increasingly common. While these consortia effectively increase sample size, phenotype heterogeneity across studies represents a major obstacle that limits successful identification of these associations. Investigators are faced with the challenge of how to harmonize previously collected phenotype data obtained using different data collection instruments which cover topics in varying degrees of detail and over diverse time frames. This process has not been described in detail. We describe here some of the strategies and pitfalls associated with combining phenotype data from varying studies. Using the Gene Environment Association Studies (GENEVA) multi-site GWAS consortium as an example, this paper provides an illustration to guide GWAS consortia through the process of phenotype harmonization and describes key issues that arise when sharing data across disparate studies. GENEVA is unusual in the diversity of disease endpoints and so the issues it faces as its participating studies share data will be informative for many collaborations. Phenotype harmonization requires identifying common phenotypes, determining the feasibility of cross-study analysis for each, preparing common definitions, and applying appropriate algorithms. Other issues to be considered include genotyping timeframes, coordination of parallel efforts by other collaborative groups, analytic approaches, and imputation of genotype data. GENEVA's harmonization efforts and policy of promoting data sharing and collaboration, not only within GENEVA but also with outside collaborations, can provide important guidance to ongoing and new consortia.

摘要

全基因组关联研究(GWAS)联盟和合作组织的形成旨在检测常见表型的遗传基因座或研究基因-环境(G*E)相互作用,这种情况越来越普遍。虽然这些联盟有效地增加了样本量,但研究之间的表型异质性是一个主要障碍,限制了这些关联的成功识别。研究人员面临的挑战是如何协调以前使用不同数据收集工具收集的表型数据,这些工具涵盖了不同程度详细程度和不同时间框架的主题。这个过程尚未详细描述。我们在这里描述了一些从不同研究中组合表型数据的策略和陷阱。本文以基因环境关联研究(GENEVA)多站点 GWAS 联盟为例,提供了一个指导 GWAS 联盟进行表型协调的说明,并描述了在不同研究之间共享数据时出现的关键问题。GENEVA 在疾病终点的多样性方面很独特,因此它在共享数据方面面临的问题将为许多合作提供信息。表型协调需要确定常见表型,确定每个表型的跨研究分析的可行性,准备共同的定义,并应用适当的算法。其他需要考虑的问题包括基因分型时间范围、协调其他合作组的平行工作、分析方法和基因型数据的推断。GENEVA 的协调工作和促进数据共享与合作的政策,不仅在 GENEVA 内部,而且在与外部合作组织之间,都可以为正在进行的和新的联盟提供重要指导。

相似文献

4
Invited Commentary: E Pluribus Unum for Epidemiology.特邀评论:流行病学的“合众为一”
Am J Epidemiol. 2016 Jan 15;183(2):92-4. doi: 10.1093/aje/kwv236. Epub 2015 Dec 10.

引用本文的文献

6
Phenotype Harmonization in the GLIDE2 Oral Health Genomics Consortium.GLIDE2 口腔健康基因组学联盟中的表型协调。
J Dent Res. 2022 Oct;101(11):1408-1416. doi: 10.1177/00220345221109775. Epub 2022 Aug 24.

本文引用的文献

3
Replication in genome-wide association studies.全基因组关联研究中的复制
Stat Sci. 2009 Nov 1;24(4):561-573. doi: 10.1214/09-STS290.
10
Genotype imputation.基因型推算
Annu Rev Genomics Hum Genet. 2009;10:387-406. doi: 10.1146/annurev.genom.9.081307.164242.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验