Tulli G, Vignali G, Guadagnucci A, Mondello V
Unità Operativa di Anestesia e Rianimazione, Presidio Ospedaliero San Giacomo e Cristoforo di Massa, Unità Sanitaria Locale, Regione Toscana, Italy.
Scand J Clin Lab Invest Suppl. 1990;203:107-18. doi: 10.3109/00365519009087498.
In Critical Care medicine the concepts of Oxygen Delivery, Oxygen Consumption and Tissue Oxygenation have become fundamental in clinical practice but measurements of Oxygen Content and O2 Transport variables require invasive procedures that could be dangerous for critically ill patients and trigger a septic process. Derived indices obtained combining data from a Blood Gas Analyzer with the data from a multi-wavelength spectrophotometer and using the Ole Siggaard-Andersen pH/Blood Gas computerised algorithm might be the non-invasive answer. On 115 arterial blood samples from critically ill patients, we measured pH, pCO2, pO2, oxygen saturation, total hemoglobin concentration and fractions of carboxy- and methemoglobin. The new algorithm was used to calculate: active hemoglobin concentration, total oxygen concentration, actual half-saturation tension, 2,3-diphosphoglycerate concentration, estimated functional shunt, uncompensated mixed venous pO2 (assuming an arterio-venous oxygen difference of 2.3 mmol/L based on a standard oxygen consumption of 11.2 mmol/min and a standard cardiac output of 4.9 L/min) and the cardiac oxygen compensation factor. In Intensive Care all the oxygen parameters may be determined with sufficient accuracy and precision provided the oxygen saturation level is less than 0.97 and provided the definition of oxygen saturation is properly settled and measurements are performed according to the highest state of the art. However, in critically ill patients in evolution our aim is to maintain an 'optimal' paO2 on the plateau of the Oxygen Dissociation Curve (ODC) and the use of mechanical ventilation, high FIO2, fluid challenges and the rapid improvement of the patient's conditions can cause a value for sO2 greater than or less than 0.97 and an improvement or worsening of the paO2. The p50 calculation both in simultaneously drawn arterial and venous blood permits utilisation of derived indices (pO2uv-, CQ) for sO2 greater than 0.97. The Ole Siggaard-Andersen algorithm seems to give correct p50 values, at high saturation values, particularly when discarding unrealistic values for calculated cDPG. The correlation between p50 calculated by the Ole Sigaard-Andersen algorithm with that derived from classical formula shows the superiority of the findings obtained by means of the new algorithm. In critically ill patients the ODC is usually shifted to the right. The new parameters, pO2uv- and CQ, contain useful informations for clinical practise; but rapid changes in Cardiac Index (CI) and VO2/m2 can be ignored by the new algorithm, if these changes are not associated with a rise in ctO2 or pH and pCO2 changes.(ABSTRACT TRUNCATED AT 400 WORDS)
在重症医学中,氧输送、氧消耗和组织氧合的概念已成为临床实践的基础,但氧含量和氧输送变量的测量需要侵入性操作,这对重症患者可能是危险的,并可能引发感染过程。将血气分析仪的数据与多波长分光光度计的数据相结合,并使用奥莱·西格加德 - 安德森pH/血气计算机算法获得的衍生指标可能是非侵入性的解决方案。我们对115例重症患者的动脉血样本进行了检测,测量了pH值、pCO2、pO2、氧饱和度、总血红蛋白浓度以及羧基血红蛋白和高铁血红蛋白的比例。使用新算法计算:活性血红蛋白浓度、总氧浓度、实际半饱和张力、2,3 - 二磷酸甘油酸浓度、估计的功能性分流、未代偿的混合静脉pO2(假设动静脉氧差为2.3 mmol/L,基于标准氧消耗11.2 mmol/min和标准心输出量4.9 L/min)以及心脏氧补偿因子。在重症监护中,只要氧饱和度水平低于0.97,并且氧饱和度的定义恰当且测量按照最高技术水平进行,所有氧参数都可以以足够的准确度和精密度来确定。然而,在病情发展中的重症患者中,我们的目标是在氧解离曲线(ODC)的平台期维持“最佳”的动脉血氧分压(paO2),而机械通气、高吸入氧浓度(FIO2)、液体冲击以及患者病情的快速改善可能导致氧饱和度(sO2)值大于或小于0.97,以及paO2的改善或恶化。同时采集动脉血和静脉血进行p50计算,对于sO2大于0.97的情况,可以利用衍生指标(pO2uv - 、CQ)。奥莱·西格加德 - 安德森算法在高饱和度值时似乎能给出正确的p50值,特别是在舍弃计算出的2,3 - 二磷酸甘油酸(cDPG)不切实际的值时。通过奥莱·西格加德 - 安德森算法计算的p50与经典公式得出的p50之间的相关性表明了新算法所得结果的优越性。在重症患者中,ODC通常会右移。新参数pO2uv - 和CQ包含对临床实践有用的信息;但是,如果心脏指数(CI)和氧耗量/体表面积(VO2/m2)的快速变化与总氧含量(ctO2)升高或pH值和pCO2变化无关,新算法可能会忽略这些变化。(摘要截选至400字)