Suppr超能文献

同源建模的质量度量:H 因子。

A quality metric for homology modeling: the H-factor.

机构信息

Computer Science Department, Room 4337, Genome Center, GBSF University of California Davis 451 East Health Sciences Drive Davis, CA 95616, USA.

出版信息

BMC Bioinformatics. 2011 Feb 4;12:48. doi: 10.1186/1471-2105-12-48.

Abstract

BACKGROUND

The analysis of protein structures provides fundamental insight into most biochemical functions and consequently into the cause and possible treatment of diseases. As the structures of most known proteins cannot be solved experimentally for technical or sometimes simply for time constraints, in silico protein structure prediction is expected to step in and generate a more complete picture of the protein structure universe. Molecular modeling of protein structures is a fast growing field and tremendous works have been done since the publication of the very first model. The growth of modeling techniques and more specifically of those that rely on the existing experimental knowledge of protein structures is intimately linked to the developments of high resolution, experimental techniques such as NMR, X-ray crystallography and electron microscopy. This strong connection between experimental and in silico methods is however not devoid of criticisms and concerns among modelers as well as among experimentalists.

RESULTS

In this paper, we focus on homology-modeling and more specifically, we review how it is perceived by the structural biology community and what can be done to impress on the experimentalists that it can be a valuable resource to them. We review the common practices and provide a set of guidelines for building better models. For that purpose, we introduce the H-factor, a new indicator for assessing the quality of homology models, mimicking the R-factor in X-ray crystallography. The methods for computing the H-factor is fully described and validated on a series of test cases.

CONCLUSIONS

We have developed a web service for computing the H-factor for models of a protein structure. This service is freely accessible at http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor.

摘要

背景

蛋白质结构的分析为大多数生化功能提供了基本的见解,进而为疾病的原因和可能的治疗提供了基本的见解。由于大多数已知蛋白质的结构由于技术原因或有时仅仅是由于时间限制,无法在实验中解决,因此,计算机蛋白质结构预测有望介入并生成更完整的蛋白质结构宇宙图。蛋白质结构的分子建模是一个快速发展的领域,自第一篇模型发表以来,已经做了大量的工作。建模技术的发展,特别是那些依赖于蛋白质结构现有实验知识的技术的发展,与高分辨率实验技术如 NMR、X 射线晶体学和电子显微镜的发展密切相关。然而,这种实验方法和计算方法之间的紧密联系并非没有建模者和实验者的批评和担忧。

在本文中,我们专注于同源建模,更具体地说,我们回顾了结构生物学界如何看待它,以及可以做些什么来给实验者留下深刻印象,即它可以成为他们的宝贵资源。我们回顾了常见的做法,并为构建更好的模型提供了一套准则。为此,我们引入了 H 因子,这是一种用于评估同源模型质量的新指标,模仿 X 射线晶体学中的 R 因子。计算 H 因子的方法在一系列测试案例中进行了全面描述和验证。

我们开发了一个用于计算蛋白质结构模型 H 因子的网络服务。该服务可在 http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor 上免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a7/3213331/da38028379fd/1471-2105-12-48-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验