Liu Hao, Qi Zihui, Wang Yihang, Yang Zhengyi, Fan Lingzhong, Zuo Nianming, Jiang Tianzi
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
Neurosci Bull. 2025 Mar;41(3):391-405. doi: 10.1007/s12264-024-01321-z. Epub 2024 Nov 29.
Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.
闭环神经调节,尤其是利用脑电图(EEG)节律的相位来评估实时脑状态并优化脑刺激过程,正成为一个热门的研究课题。由于EEG信号是非平稳的,常用的基于EEG相位的预测方法具有较大的方差,这可能会降低相位预测的准确性。在本研究中,我们提出了一种基于机器学习的EEG相位预测网络,我们称之为EEG相位预测网络(EPN),以捕捉受试者的整体节律分布模式,并直接从窄带EEG数据中映射瞬时相位。我们在预记录数据、模拟EEG数据和实时实验中验证了EPN的性能。与广泛使用的最先进模型(优化的多层滤波器架构、自回归和经验时间预测)相比,EPN实现了最低的方差和最高的准确性。因此,EPN模型将为基于EEG相位的闭环神经调节提供更广泛的应用。