Suppr超能文献

重力和结构特征对肺循环多尺度模型中灌注分布的相互贡献。

The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation.

机构信息

Auckland Bioengineering Institute, Univ. of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.

出版信息

J Appl Physiol (1985). 2011 Apr;110(4):943-55. doi: 10.1152/japplphysiol.00775.2010. Epub 2011 Feb 3.

Abstract

Recent experimental and imaging studies suggest that the influence of gravity on the measured distribution of blood flow in the lung is largely through deformation of the parenchymal tissue. To study the contribution of hydrostatic effects to regional perfusion in the presence of tissue deformation, we have developed an anatomically structured computational model of the pulmonary circulation (arteries, capillaries, veins), coupled to a continuum model of tissue deformation, and including scale-appropriate fluid dynamics for blood flow in each vessel type. The model demonstrates that both structural and the multiple effects of gravity on the pulmonary circulation make a distinct contribution to the distribution of blood. It shows that postural differences in perfusion gradients can be explained by the combined effect of tissue deformation and extra-acinar blood vessel resistance to flow in the dependent tissue. However, gravitational perfusion gradients persist when the effect of tissue deformation is eliminated, highlighting the importance of the hydrostatic effects of gravity on blood distribution in the pulmonary circulation. Coupling of large- and small-scale models reveals variation in microcirculatory driving pressures within isogravitational planes due to extra-acinar vessel resistance. Variation in driving pressures is due to heterogeneous large-vessel resistance as a consequence of geometric asymmetry in the vascular trees and is amplified by the complex balance of pressures, distension, and flow at the microcirculatory level.

摘要

最近的实验和成像研究表明,重力对肺部血流测量分布的影响主要是通过实质组织的变形。为了研究在组织变形存在的情况下静水压力效应对局部灌注的贡献,我们开发了一种肺循环(动脉、毛细血管、静脉)的解剖结构计算模型,与组织变形的连续体模型耦合,并包括每个血管类型的适当尺度的血流流体动力学。该模型表明,重力对肺循环的结构和多种影响都对血液分布有明显的贡献。它表明,体位灌注梯度的差异可以通过组织变形和依赖组织中血管对血流的额外阻力的综合作用来解释。然而,当消除组织变形的影响时,重力的灌注梯度仍然存在,这突出了重力静水压力效应对肺循环中血液分布的重要性。大、小尺度模型的耦合揭示了由于非腺泡血管阻力导致等重力平面内微循环驱动压力的变化。驱动压力的变化是由于大血管阻力的不均匀性,这是由于血管树的几何不对称造成的,并且在微循环水平上的压力、膨胀和流动的复杂平衡下被放大。

相似文献

1
The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation.
J Appl Physiol (1985). 2011 Apr;110(4):943-55. doi: 10.1152/japplphysiol.00775.2010. Epub 2011 Feb 3.
2
Distribution of perfusion.
Compr Physiol. 2011 Jan;1(1):245-62. doi: 10.1002/cphy.c100012.
3
Gravity is a minor determinant of pulmonary blood flow distribution.
J Appl Physiol (1985). 1991 Aug;71(2):620-9. doi: 10.1152/jappl.1991.71.2.620.
4
Computational models of structure-function relationships in the pulmonary circulation and their validation.
Exp Physiol. 2006 Mar;91(2):285-93. doi: 10.1113/expphysiol.2005.030957. Epub 2006 Jan 11.
5
Computational modeling of airway and pulmonary vascular structure and function: development of a "lung physiome".
Crit Rev Biomed Eng. 2011;39(4):319-36. doi: 10.1615/critrevbiomedeng.v39.i4.50.
7
9
Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity.
J Appl Physiol (1985). 2000 Sep;89(3):1239-48. doi: 10.1152/jappl.2000.89.3.1239.
10
The effect of lung deformation on the spatial distribution of pulmonary blood flow.
J Physiol. 2016 Nov 1;594(21):6333-6347. doi: 10.1113/JP272030. Epub 2016 Jul 8.

引用本文的文献

1
Inference of alveolar capillary network connectivity from blood flow dynamics.
Am J Physiol Lung Cell Mol Physiol. 2024 Dec 1;327(6):L852-L866. doi: 10.1152/ajplung.00025.2024. Epub 2024 Sep 25.
2
Roadmap for an imaging and modelling paediatric study in rural NZ.
Front Physiol. 2023 Mar 10;14:1104838. doi: 10.3389/fphys.2023.1104838. eCollection 2023.
3
Simulating Multi-Scale Pulmonary Vascular Function by Coupling Computational Fluid Dynamics With an Anatomic Network Model.
Front Netw Physiol. 2022 Apr 25;2:867551. doi: 10.3389/fnetp.2022.867551. eCollection 2022.
4
Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations.
Front Physiol. 2022 Jun 20;13:923945. doi: 10.3389/fphys.2022.923945. eCollection 2022.
5
A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise.
Eur J Appl Physiol. 2022 Jun;122(6):1317-1365. doi: 10.1007/s00421-022-04901-x. Epub 2022 Feb 26.
6
A computational model of contributors to pulmonary hypertensive disease: impacts of whole lung and focal disease distributions.
Pulm Circ. 2021 Nov 18;11(4):20458940211056527. doi: 10.1177/20458940211056527. eCollection 2021 Oct-Dec.
7
Ventilation/Perfusion Matching: Of Myths, Mice, and Men.
Physiology (Bethesda). 2019 Nov 1;34(6):419-429. doi: 10.1152/physiol.00016.2019.
9
Healthy Lung Vessel Morphology Derived From Thoracic Computed Tomography.
Front Physiol. 2018 Apr 10;9:346. doi: 10.3389/fphys.2018.00346. eCollection 2018.
10
In silico modeling of oxygen-enhanced MRI of specific ventilation.
Physiol Rep. 2018 Apr;6(7):e13659. doi: 10.14814/phy2.13659.

本文引用的文献

1
Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans.
J Physiol. 2010 Dec 1;588(Pt 23):4759-68. doi: 10.1113/jphysiol.2010.196063. Epub 2010 Oct 4.
2
Physiological Heterogeneity: Fractals Link Determinism and Randomness in Structures and Functions.
News Physiol Sci. 1988 Jan 1;3(1):5-10. doi: 10.1152/physiologyonline.1988.3.1.5.
3
Contribution of serial and parallel microperfusion to spatial variability in pulmonary inter- and intra-acinar blood flow.
J Appl Physiol (1985). 2010 May;108(5):1116-26. doi: 10.1152/japplphysiol.01177.2009. Epub 2010 Jan 28.
4
Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion.
Ann Biomed Eng. 2009 Dec;37(12):2497-509. doi: 10.1007/s10439-009-9802-2. Epub 2009 Sep 19.
5
Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape.
J Appl Physiol (1985). 2009 Sep;107(3):912-20. doi: 10.1152/japplphysiol.00324.2009. Epub 2009 Jul 9.
6
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
7
Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.
J Appl Physiol (1985). 2007 Jul;103(1):240-8. doi: 10.1152/japplphysiol.01289.2006. Epub 2007 Mar 29.
9
Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation.
Respir Physiol Neurobiol. 2007 Jun 15;156(3):293-303. doi: 10.1016/j.resp.2006.11.001. Epub 2006 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验