Tawhai Merryn, Clark A, Donovan G, Burrowes K
Auckland Bioengineering Institute, The University of Auckland, New Zealand.
Crit Rev Biomed Eng. 2011;39(4):319-36. doi: 10.1615/critrevbiomedeng.v39.i4.50.
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction.
肺结构与功能的计算模型必然跨越多个空间和时间尺度,即动态分子相互作用产生整个器官的功能,如果仅考虑分子或器官水平的功能,就无法完全理解这些尺度之间的联系。在此,我们回顾了构建肺结构与功能多尺度有限元模型的进展,这些模型旨在提供一个计算框架,以弥合从分子到整个器官的空间尺度。其中包括完整肺的结构模型、与肺组织模型耦合的肺气道嵌入式模型,以及考虑腺泡外和腺泡内不同结构差异的肺血管模型。还描述了基于生物物理的组织变形、肺血流和气道支气管收缩功能模型。这些先进多尺度模型的发展,使人们对控制局部肺灌注和支气管收缩过程中出现的异质性的复杂生理机制有了更好的理解。