Ebrahimi Behdad Shaarbaf, Kumar Haribalan, Tawhai Merryn H, Burrowes Kelly S, Hoffman Eric A, Clark Alys R
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Department of Radiology, University of Iowa, Iowa City, IA, United States.
Front Netw Physiol. 2022 Apr 25;2:867551. doi: 10.3389/fnetp.2022.867551. eCollection 2022.
The function of the pulmonary circulation is truly multi-scale, with blood transported through vessels from centimeter to micron scale. There are scale-dependent mechanisms that govern the flow in the pulmonary vascular system. However, very few computational models of pulmonary hemodynamics capture the physics of pulmonary perfusion across the spatial scales of functional importance in the lung. Here we present a multi-scale model that incorporates the 3-dimensional (3D) complexities of pulmonary blood flow in the major vessels, coupled to an anatomically-based vascular network model incorporating the multiple contributing factors to capillary perfusion, including gravity. Using the model we demonstrate how we can predict the impact of vascular remodeling and occlusion on both macro-scale functional drivers (flow distribution between lungs, and wall shear stress) and micro-scale contributors to gas exchange. The model predicts interactions between 3D and 1D models that lead to a redistribution of blood between postures, both on a macro- and a micro-scale. This allows us to estimate the effect of posture on left and right pulmonary artery wall shear stress, with predictions varying by 0.75-1.35 dyne/cm between postures.
肺循环的功能具有真正的多尺度性,血液通过从厘米级到微米级的血管进行运输。存在一些依赖尺度的机制来控制肺血管系统中的血流。然而,很少有肺血流动力学的计算模型能够捕捉到肺内具有功能重要性的空间尺度上的肺灌注物理过程。在此,我们提出一个多尺度模型,该模型纳入了主要血管中肺血流的三维(3D)复杂性,并与一个基于解剖结构的血管网络模型相结合,该网络模型纳入了影响毛细血管灌注的多种因素,包括重力。使用该模型,我们展示了如何预测血管重塑和阻塞对宏观尺度功能驱动因素(肺之间的血流分布以及壁面剪应力)和微观尺度气体交换贡献因素的影响。该模型预测了3D模型和1D模型之间的相互作用,这种相互作用会导致不同姿势下血液在宏观和微观尺度上的重新分布。这使我们能够估计姿势对左右肺动脉壁面剪应力的影响,不同姿势下的预测结果相差0.75 - 1.35达因/平方厘米。