Department of Political Science, Stanford University, Encina Hall West, 616 Serra Street, Palo Alto, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2643-50. doi: 10.1073/pnas.1018067108. Epub 2011 Feb 3.
We develop a computer-assisted method for the discovery of insightful conceptualizations, in the form of clusterings (i.e., partitions) of input objects. Each of the numerous fully automated methods of cluster analysis proposed in statistics, computer science, and biology optimize a different objective function. Almost all are well defined, but how to determine before the fact which one, if any, will partition a given set of objects in an "insightful" or "useful" way for a given user is unknown and difficult, if not logically impossible. We develop a metric space of partitions from all existing cluster analysis methods applied to a given dataset (along with millions of other solutions we add based on combinations of existing clusterings) and enable a user to explore and interact with it and quickly reveal or prompt useful or insightful conceptualizations. In addition, although it is uncommon to do so in unsupervised learning problems, we offer and implement evaluation designs that make our computer-assisted approach vulnerable to being proven suboptimal in specific data types. We demonstrate that our approach facilitates more efficient and insightful discovery of useful information than expert human coders or many existing fully automated methods.
我们开发了一种计算机辅助方法,用于发现有见地的概念化,其形式为输入对象的聚类(即分区)。统计学、计算机科学和生物学中提出的众多完全自动化的聚类分析方法中的每一种都优化了不同的目标函数。几乎所有方法都有明确定义,但在事实之前,如何确定对于给定用户,哪些方法(如果有的话)将以“有见地”或“有用”的方式对给定的对象集进行分区是未知且困难的,如果不是逻辑上不可能的话。我们从应用于给定数据集的所有现有聚类分析方法中开发了一个分区度量空间(以及基于现有聚类组合添加的数百万个其他解决方案),并使用户能够探索和与之交互,并快速揭示或提示有用或有见地的概念化。此外,尽管在无监督学习问题中很少这样做,但我们提供并实现了评估设计,使我们的计算机辅助方法容易在特定数据类型中被证明为次优。我们证明,与专家人类编码员或许多现有的完全自动化方法相比,我们的方法更有助于高效和有见地地发现有用信息。