Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA.
Br J Dermatol. 2011 Apr;164(4):797-806. doi: 10.1111/j.1365-2133.2011.10239.x. Epub 2011 Mar 25.
Early detection and treatment of melanoma is important for optimal clinical outcome, leading to biopsy of pigmented lesions deemed suspicious for the disease. The vast majority of such lesions are benign. Thus, a more objective and accurate means for detection of melanoma is needed to identify lesions for excision.
To provide proof-of-principle that epidermal genetic information retrieval (EGIR™; DermTech International, La Jolla, CA, U.S.A.), a method that noninvasively samples cells from stratum corneum by means of adhesive tape stripping, can be used to discern melanomas from naevi.
Skin overlying pigmented lesions clinically suspicious for melanoma was harvested using EGIR. RNA isolated from the tapes was amplified and gene expression profiled. All lesions were removed for histopathological evaluation.
Supervised analysis of the microarray data identified 312 genes differentially expressed between melanomas, naevi and normal skin specimens (P<0·001, false discovery rate q<0·05). Surprisingly, many of these genes are known to have a role in melanocyte development and physiology, melanoma, cancer, and cell growth control. Subsequent class prediction modelling of a training dataset, consisting of 37 melanomas and 37 naevi, discovered a 17-gene classifier that discriminates these skin lesions. Upon testing with an independent dataset, this classifier discerned in situ and invasive melanomas from naevi with 100% sensitivity and 88% specificity, with an area under the curve for the receiver operating characteristic of 0·955.
These results demonstrate that EGIR-harvested specimens can be used to detect melanoma accurately by means of a 17-gene genomic biomarker.
早期检测和治疗黑色素瘤对于获得最佳临床疗效至关重要,这会导致对疑似黑色素瘤的色素性病变进行活检。而绝大多数此类病变都是良性的。因此,需要一种更客观、更准确的方法来检测黑色素瘤,以便识别需要切除的病变。
提供原理验证,证明表皮基因信息获取(EGIR™;美国加利福尼亚州拉霍亚 DermTech International)是一种通过粘性胶带剥离从角质层非侵入性采样细胞的方法,可用于区分黑色素瘤与痣。
使用 EGIR 采集临床疑似黑色素瘤的色素性病变上方的皮肤。从胶带中分离出的 RNA 进行扩增和基因表达谱分析。所有病变均切除进行组织病理学评估。
对微阵列数据的监督分析确定了黑色素瘤、痣和正常皮肤标本之间差异表达的 312 个基因(P<0·001,错误发现率 q<0·05)。令人惊讶的是,其中许多基因已知在黑素细胞发育和生理学、黑色素瘤、癌症和细胞生长控制中发挥作用。随后对一个包含 37 个黑色素瘤和 37 个痣的训练数据集进行分类预测建模,发现了一个 17 基因分类器,可区分这些皮肤病变。在使用独立数据集进行测试时,该分类器以 100%的敏感性和 88%的特异性,对黑素瘤和痣进行区分,ROC 曲线下的面积为 0·955。
这些结果表明,通过 17 个基因基因组生物标志物,EGIR 采集的标本可用于准确检测黑色素瘤。