Suppr超能文献

一种创新的细胞医学方法,即利用基于新型纳米技术的生物机电平台作为早期黑色素瘤诊断的无标记生物标志物。

An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis.

作者信息

Alqabandi Jassim A, David Rhiannon, Abdel-Motal Ussama M, ElAbd Rawan O, Youcef-Toumi Kamal

机构信息

Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.

Mechatronics in Medicine Laboratory, Imperial College London, London, UK.

出版信息

Sci Rep. 2024 Dec 3;14(1):30107. doi: 10.1038/s41598-024-79154-z.

Abstract

Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).

摘要

创新细胞医学(ICM)是一个呈指数级兴起的领域,它为对抗诸如多发性硬化症(MS)、关节炎、帕金森病、阿尔茨海默病、心脏病和癌症等复杂且普遍存在的危及生命的疾病提供了一种有前景的方法。随着纳米技术和生物机电一体化的发展,ICM在从单细胞水平理解疾病的本质和特性方面彻底改变了细胞疗法。本文聚焦于癌症的复杂本质,这需要多学科的努力才能很好地对其进行表征,以便在细胞水平实现现代当代医学早期检测疾病并潜在地阻止其增殖机制的目标。这证明了本文作者具有多学科研究背景,通过弥合实验生物学与工程领域之间的差距来推动细胞医学发展。因此,在采用这种方法时,设计、建模、纳米制造了两个新型的小型化且高度通用的生物机电平台,并配备专用操作软件和微电子设备,在众多体外实验中进行测试,以通过关联细胞收缩力、膜电位和细胞形态来研究一个假设,并得出关于黑色素瘤癌细胞致癌作用的已证定理,用于早期检测和表征黑色素瘤癌细胞。这项工作中涌现的创新体现在六个方面:(1)开发一个利用海维赛德阶跃函数以及销钉力模型来计算活细胞收缩力的数学模型;(2)通过考虑瓦尔堡扩散阻抗因子,基于拉普拉斯变换和傅里叶变换及其逆变换函数推导细胞膜电位的表达式;(3)纳米制造具有相关微电子设备和定制软件的新型生物机电平台,以提取细胞物理和力学特性;(4)开发一种无标记生物标志物;(5)得出一个已证定理,即在将癌细胞力学生物学与其生物物理学与疾病阶段相关联方面开发一个数学表达式;(6)据作者所知,在文献中首次基于癌细胞的细胞膜电位及其相关收缩力来区分黑色素瘤癌细胞的不同阶段和形态,这可能会引入细胞治疗模式、临床前癌症早期诊断的新途径以及免疫治疗药物开发的新方法。所提出的基于创新技术的通用生物机电平台将用于未来的研究,研究神经系统的电化学信号在癌症形成中的作用,这将通过采用靶向免疫治疗方法对现代肿瘤学产生重大影响。这项工作还为免疫治疗从业者提供了一个强大的平台,用于扩展对细胞生物物理学在阻止神经 - 癌症相互作用方面的研究,其中FDA批准的嵌合抗原受体(CAR) - T细胞疗法可以在实验室中通过改进其受体以捕获癌症抗原来得到增强(基因工程改造)。这项工作凸显了研究神经递质和电化学信号分子在塑造免疫T细胞功能及其阻止癌症增殖率(力学生物学机制)有效性方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2148/11615046/efca252799b5/41598_2024_79154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验