Department of Chemistry and Institute of Basic Sciences, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757, Korea.
J Mol Biol. 2011 Apr 1;407(3):413-24. doi: 10.1016/j.jmb.2011.01.045. Epub 2011 Feb 3.
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+–cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism.
产乙醇细菌运动发酵单胞菌 ZM4 具有很高的乙醇产率,因此引起了人们的特别关注。这种特性是由运动发酵单胞菌 ZM4 中存在的两种醇脱氢酶(ADHs)(zmADHs)实现的,这两种酶使反应平衡向乙醇合成方向移动。它们是金属依赖性酶:锌与 zmADH1 结合,铁与 zmADH2 结合。然而,zmADH2 会被氧气失活,这表明 zmADH2 是运动发酵单胞菌胞质呼吸系统的组成部分。在这里,我们展示了以无辅基酶和 NAD+辅因子复合物形式存在的 zmADH2 的晶体结构。单体结构的整体折叠与其他具有功能相关性的 ADHs 非常相似,其结构在可能的底物和 NAD+辅因子结合区域周围存在差异。通过两个亚基之间的有限相互作用形成二聚体结构,而 NAD+结合在沿结构域界面形成的裂隙中。催化铁离子靠近 NAD+的烟酰胺环结合,这可能会将乙醇与氧化的半胱氨酸残基和几个非极性大体积残基一起限制在活性位点上。具有高效乙醇生产能力的运动发酵单胞菌 zmADH2 的结构(有和没有 NAD+辅因子)以及在活性位点模拟乙醇的模型表明,存在典型的金属依赖性催化机制。