Department of Chemistry - BMC, Uppsala University, Sweden.
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
FEBS J. 2023 Jan;290(2):465-481. doi: 10.1111/febs.16603. Epub 2022 Sep 6.
A group-III iron containing 1,2-propanediol oxidoreductase, FucO, (also known as lactaldehyde reductase) from Escherichia coli was examined regarding its structure-dynamics-function relationships in the catalysis of the NADH-dependent reduction of (2S)-lactaldehyde. Crystal structures of FucO variants in the presence or absence of cofactors have been determined, illustrating large domain movements between the apo and holo enzyme structures. Different structures of FucO variants co-crystallized with NAD or NADH together with substrate further suggest dynamic properties of the nicotinamide moiety of the coenzyme that are important for the reaction mechanism. Modelling of the native substrate (2S)-lactaldehyde into the active site can explain the stereoselectivity exhibited by the enzyme, with a critical hydrogen bond interaction between the (2S)-hydroxyl and the side-chain of N151, as well as the previously experimentally demonstrated pro-(R) selectivity in hydride transfer from NADH to the aldehydic carbon. Furthermore, the deuterium kinetic isotope effect of hydride transfer suggests that reduction chemistry is the main rate-limiting step for turnover which is not the case in FucO catalysed alcohol oxidation. We further propose that a water molecule in the active site - hydrogen bonded to a conserved histidine (H267) and the 2'-hydroxyl of the coenzyme ribose - functions as a catalytic proton donor in the protonation of the product alcohol. A hydrogen bond network of water molecules and the side-chains of amino acid residues D360 and H267 links bulk solvent to this proposed catalytic water molecule.
一种含有 III 族铁的 1,2-丙二醇氧化还原酶,即大肠杆菌中的 FucO(也称为乳醛还原酶),在 NADH 依赖性还原(2S)-乳醛的催化作用方面,其结构-动力学-功能关系已被研究。已经确定了存在或不存在辅因子的 FucO 变体的晶体结构,说明了apo 和 holo 酶结构之间的大结构域运动。与 NAD 或 NADH 以及底物共结晶的 FucO 变体的不同结构进一步表明了辅酶烟酰胺部分的动态特性,这对于反应机制很重要。将天然底物(2S)-乳醛模拟到活性位点可以解释酶的立体选择性,其中(2S)-羟基和 N151 的侧链之间存在关键的氢键相互作用,以及先前实验证明的在 NADH 向醛碳原子转移中具有前(R)选择性。此外,氢转移的氘动力学同位素效应表明,还原化学是周转率的主要限速步骤,而在 FucO 催化的醇氧化中则不是。我们进一步提出,活性位点中的一个水分子-与保守的组氨酸(H267)和辅酶核糖的 2'-羟基氢键结合-在产物醇的质子化中作为催化质子供体。水分子和氨基酸残基 D360 和 H267 的侧链的氢键网络将大量溶剂与该提议的催化水分子连接起来。