Suppr超能文献

一种强大的截断尾部强度方法,用于在一个数据集上测试多个零假设。

A powerful truncated tail strength method for testing multiple null hypotheses in one dataset.

机构信息

Department of Biostatistics, University of Alabama at Birmingham, AL 35294, USA.

出版信息

J Theor Biol. 2011 May 21;277(1):67-73. doi: 10.1016/j.jtbi.2011.01.029. Epub 2011 Feb 3.

Abstract

In microarray analysis, medical imaging analysis and functional magnetic resonance imaging, we often need to test an overall null hypothesis involving a large number of single hypotheses (usually larger than 1000) in one dataset. A tail strength statistic (Taylor and Tibshirani, 2006) and Fisher's probability method are useful and can be applied to measure an overall significance for a large set of independent single hypothesis tests with the overall null hypothesis assuming that all single hypotheses are true. In this paper we propose a new method that improves the tail strength statistic by considering only the values whose corresponding p-values are less than some pre-specified cutoff. We call it truncated tail strength statistic. We illustrate our method using a simulation study and two genome-wide datasets by chromosome. Our method not only controls type one error rate quite well, but also has significantly higher power than the tail strength method and Fisher's method in most cases.

摘要

在微阵列分析、医学成像分析和功能磁共振成像中,我们经常需要在一个数据集上测试一个涉及大量单一假设的总体零假设(通常大于 1000 个)。尾巴强度统计量(Taylor 和 Tibshirani,2006)和 Fisher 的概率方法很有用,可以应用于测量一组具有总体零假设的大量独立单一假设检验的总体显著性,该假设假设所有单一假设都是真实的。在本文中,我们提出了一种新的方法,通过只考虑对应于 p 值小于某个预定义截止值的那些值,来改进尾巴强度统计量。我们称之为截断的尾巴强度统计量。我们使用一个模拟研究和两个按染色体划分的全基因组数据集来说明我们的方法。我们的方法不仅可以很好地控制第一类错误率,而且在大多数情况下比尾巴强度方法和 Fisher 方法具有更高的功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验