Suppr超能文献

关于理解质子转移至[Fe-Fe]氢化酶中生物催化[Fe-Fe](H)亚簇:量子力学/分子力学分子动力学模拟

On understanding proton transfer to the biocatalytic [Fe-Fe](H) sub-cluster in [Fe-Fe]H(2)ases: QM/MM MD simulations.

作者信息

Hong G, Cornish A J, Hegg E L, Pachter R

机构信息

Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA.

出版信息

Biochim Biophys Acta. 2011 May;1807(5):510-7. doi: 10.1016/j.bbabio.2011.01.011. Epub 2011 Feb 4.

Abstract

Proton transfer to the Fe-Fe sub-cluster in the Desulfovibrio desulfuricans (DdH) and Clostridium pasteurianum (CpI) [Fe-Fe] hydrogenases was investigated by a combination of first principles and empirical molecular dynamics simulations. Pathways that can be inferred from the X-ray crystal structures of DdH and CpI, i.e., (Glu159→Ser198→Glu156→water460→Cys178→DTMA(Fe-Fe) and (Glu282→Ser319→Glu279→water612→Cys299), respectively, were considered. Proton transfer from Cys178 to DTMA in the Fe-Fe sub-cluster in DdH was readily observed in our results, specifically when Fe-Fe was in the reduced state ([Fe(I)-Fe(I)]) or in the mixed valence state for the protonated distal iron Fe(d) (Fe(I)-Fe(II)-H(-)). A concerted mechanism is proposed, where proton transfer in DdH from Glu159 to Glu156 via Ser198 and Glu156 to Cys178 via water460 readily occurred, as well as from Glu282 to Glu279 via Ser319 and Glu279 to Cys299 via water612 in CpI. The theoretical prediction of the proton transfer characteristics is consistent with the assumed biocatalytic mechanism of the [Fe-Fe] hydrogenases in which the proton binds at Fe(d), providing confirmation that has not been explored so far. The computational results were qualitatively validated by the agreement with experimental hydrogen production activity data for mutated CpI enzymes, relative to the wild-type protein. Finally, the insight provided by the simulations, combined, in part, with experimental validation, are important for establishing an approach in future exploration of proton transfer to the active site in this class of enzymes, and possibly also for biomimetic analogs.

摘要

通过第一性原理和经验分子动力学模拟相结合的方法,研究了质子向脱硫脱硫弧菌(DdH)和巴氏梭菌(CpI)[Fe-Fe]氢化酶中Fe-Fe亚簇的转移。考虑了可从DdH和CpI的X射线晶体结构推断出的途径,即分别为(Glu159→Ser198→Glu156→water460→Cys178→DTMA(Fe-Fe))和(Glu282→Ser319→Glu279→water612→Cys299)。在我们的结果中很容易观察到DdH中Fe-Fe亚簇中质子从Cys178转移到DTMA,特别是当Fe-Fe处于还原态([Fe(I)-Fe(I)])或质子化远端铁Fe(d)的混合价态(Fe(I)-Fe(II)-H(-))时。提出了一种协同机制,其中DdH中质子通过Ser198从Glu159转移到Glu156,并通过water460从Glu156转移到Cys178,以及CpI中质子通过Ser319从Glu282转移到Glu279,并通过water612从Glu279转移到Cys299。质子转移特性的理论预测与[Fe-Fe]氢化酶假定的生物催化机制一致,其中质子在Fe(d)处结合,提供了迄今为止尚未探索的确认。通过与突变CpI酶相对于野生型蛋白的实验产氢活性数据的一致性,对计算结果进行了定性验证。最后,模拟提供的见解,部分与实验验证相结合,对于在未来探索此类酶中质子向活性位点转移的方法的建立很重要,并且可能对仿生类似物也很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验