Suppr超能文献

裂解物微阵列能够高通量、定量地研究细胞信号转导。

Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA.

出版信息

Mol Cell Proteomics. 2011 Apr;10(4):M110.005363. doi: 10.1074/mcp.M110.005363. Epub 2011 Feb 4.

Abstract

Lysate microarrays (reverse-phase protein arrays) hold great promise as a tool for systems-level investigations of signaling and multiplexed analyses of disease biomarkers. To date, however, widespread use of this technology has been limited by questions concerning data quality and the specificity of detection reagents. To address these concerns, we developed a strategy to identify high-quality reagents for use with lysate microarrays. In total, we tested 383 antibodies for their ability to quantify changes in protein abundance or modification in 20 biological contexts across 17 cell lines. Antibodies yielding significant differences in signal were further evaluated by immunoblotting and 82 passed our rigorous criteria. The large-scale data set from our screen revealed that cell fate decisions are encoded not just by the identities of proteins that are activated, but by differences in their signaling dynamics as well. Overall, our list of validated antibodies and associated protocols establish lysate microarrays as a robust tool for systems biology.

摘要

Lysate 微阵列(反相蛋白微阵列)作为一种用于信号系统水平研究和疾病生物标志物的多重分析的工具,具有很大的应用前景。然而,迄今为止,由于对数据质量和检测试剂特异性的问题的关注,该技术的广泛应用受到了限制。为了解决这些问题,我们开发了一种用于鉴定用于 lysate 微阵列的高质量试剂的策略。总共,我们在 17 种细胞系的 20 种生物学背景下,对 383 种抗体进行了检测,以确定它们在定量蛋白质丰度或修饰变化方面的能力。通过免疫印迹进一步评估了信号产生显著差异的抗体,有 82 种抗体通过了我们严格的标准。我们的筛选的大规模数据集显示,细胞命运的决定不仅由被激活的蛋白质的身份决定,还由它们的信号动力学差异决定。总体而言,我们验证的抗体列表和相关协议确立了 lysate 微阵列作为系统生物学的一种强大工具。

相似文献

3
Using protein microarrays to study phosphorylation-mediated signal transduction.利用蛋白质微阵列研究磷酸化介导的信号转导。
Semin Cell Dev Biol. 2012 Oct;23(8):872-82. doi: 10.1016/j.semcdb.2012.05.009. Epub 2012 Jun 15.
6
Profiling receptor tyrosine kinase activation by using Ab microarrays.利用抗体微阵列分析受体酪氨酸激酶激活情况。
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9330-5. doi: 10.1073/pnas.1633513100. Epub 2003 Jul 22.
9
Dissecting protein function and signaling using protein microarrays.利用蛋白质微阵列解析蛋白质功能和信号转导。
Curr Opin Chem Biol. 2009 Oct;13(4):398-405. doi: 10.1016/j.cbpa.2009.06.027. Epub 2009 Aug 5.

引用本文的文献

4
Predicting ligand-dependent tumors from multi-dimensional signaling features.从多维信号特征预测配体依赖性肿瘤。
NPJ Syst Biol Appl. 2017 Sep 20;3:27. doi: 10.1038/s41540-017-0030-3. eCollection 2017.
6
Reverse Phase Protein Arrays for Compound Profiling.用于化合物分析的反相蛋白质阵列
Curr Protoc Chem Biol. 2016 Sep 13;8(3):179-196. doi: 10.1002/cpch.9.
8
Studying Cellular Signal Transduction with OMIC Technologies.利用组学技术研究细胞信号转导
J Mol Biol. 2015 Oct 23;427(21):3416-40. doi: 10.1016/j.jmb.2015.07.021. Epub 2015 Aug 3.

本文引用的文献

5
Multiplexed microsphere-based flow cytometric immunoassays.基于微球的多重流式细胞免疫分析
Curr Protoc Cytom. 2006 Feb;Chapter 13:Unit13.1. doi: 10.1002/0471142956.cy1301s35.
6
Clustering of the self-organizing map.自组织映射的聚类
IEEE Trans Neural Netw. 2000;11(3):586-600. doi: 10.1109/72.846731.
8
Image-based chemical screening.基于图像的化学筛选
Nat Chem Biol. 2007 Aug;3(8):461-5. doi: 10.1038/nchembio.2007.15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验