Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
Curr Opin Chem Biol. 2009 Oct;13(4):398-405. doi: 10.1016/j.cbpa.2009.06.027. Epub 2009 Aug 5.
Although many methods exist to study the recognition and signaling properties of proteins in isolation, it remains a challenge to perform these investigations on a system-wide or proteome-wide scale and within the context of biological complexity. Protein microarray technology provides a powerful tool to assess the selectivity of protein-protein interactions in high-throughput and to quantify the abundances and post-translational modification states of many different proteins in complex mixtures. Here, we provide an overview of the various applications of protein microarray technology and compare the strengths and technical challenges associated with each approach. Overall, we conclude that if this technology is to have a substantial impact on our understanding of cell biology and physiology, increased emphasis must be placed on obtaining rigorously controlled quantitative data from protein function microarrays and on assessing the selectivity of reagents used in conjunction with protein-detecting microarrays.
虽然存在许多方法可以研究蛋白质的识别和信号转导特性,但在生物复杂性的背景下,在系统范围或蛋白质组范围内进行这些研究仍然是一个挑战。蛋白质微阵列技术提供了一种强大的工具,可以高通量评估蛋白质-蛋白质相互作用的选择性,并定量测定复杂混合物中许多不同蛋白质的丰度和翻译后修饰状态。在这里,我们概述了蛋白质微阵列技术的各种应用,并比较了每种方法的优缺点和技术挑战。总的来说,我们得出的结论是,如果这项技术要对我们对细胞生物学和生理学的理解产生重大影响,就必须更加重视从蛋白质功能微阵列获得严格控制的定量数据,并评估与蛋白质检测微阵列一起使用的试剂的选择性。