Laboratoire des Colloïdes Verres et Nanomatériaux, Université Montpellier 2, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5587, Montpellier, France.
Blood. 2011 Apr 14;117(15):4118-24. doi: 10.1182/blood-2010-08-299883. Epub 2011 Feb 4.
The culminating step of the intraerythrocytic development of Plasmodium falciparum, the causative agent of malaria, is the spectacular release of multiple invasive merozoites on rupture of the infected erythrocyte membrane. This work reports for the first time that the whole process, taking place in time scales as short as 400 milliseconds, is the result of an elastic instability of the infected erythrocyte membrane. Using high-speed differential interference contrast (DIC) video microscopy and epifluorescence, we demonstrate that the release occurs in 3 main steps after osmotic swelling of the infected erythrocyte: a pore opens in ~ 100 milliseconds, ejecting 1-2 merozoites, an outward curling of the erythrocyte membrane is then observed, ending with a fast eversion of the infected erythrocyte membrane, pushing the parasites forward. It is noteworthy that this last step shows slight differences when infected erythrocytes are adhering. We rationalize our observations by considering that during the parasite development, the infected erythrocyte membrane acquires a spontaneous curvature and we present a subsequent model describing the dynamics of the curling rim. Our results show that sequential erythrocyte membrane curling and eversion is necessary for the parasite efficient angular dispersion and might be biologically essential for fast and numerous invasions of new erythrocytes.
疟原虫(Plasmodium falciparum)是疟疾的病原体,它在红细胞内的发育过程最终会导致多个侵袭性裂殖子从受感染的红细胞膜破裂处释放出来。本工作首次报道,这一在短短 400 毫秒时间尺度内发生的全过程是受感染的红细胞膜弹性失稳的结果。我们使用高速微分干涉对比(DIC)视频显微镜和荧光显微镜,证明受感染的红细胞在渗透肿胀后,释放过程分 3 个主要步骤发生:约 100 毫秒时形成一个孔,释放 1-2 个裂殖子,然后观察到红细胞膜向外卷曲,最后受感染的红细胞膜快速外翻,将寄生虫向前推进。值得注意的是,当受感染的红细胞黏附时,最后一步会显示出细微的差异。我们通过考虑到在寄生虫发育过程中,受感染的红细胞膜获得了自发曲率,从而对我们的观察结果进行了合理化解释,并提出了一个后续模型来描述卷曲边缘的动力学。我们的结果表明,红细胞膜的连续卷曲和外翻对于寄生虫的有效角分布是必要的,并且可能对于快速和大量入侵新的红细胞具有生物学上的重要性。