Suppr超能文献

纳米拓扑学线索对干细胞细胞核的变形作用。

Deformation of stem cell nuclei by nanotopographical cues.

作者信息

Chalut Kevin J, Kulangara Karina, Giacomelli Michael G, Wax Adam, Leong Kam W

机构信息

Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.

出版信息

Soft Matter. 2010 Apr 21;6(8):1675-1681. doi: 10.1039/B921206J.

Abstract

Cells sense cues in their surrounding microenvironment. These cues are converted into intracellular signals and transduced to the nucleus in order for the cell to respond and adapt its function. Within the nucleus, structural changes occur that ultimately lead to changes in the gene expression. In this study, we explore the structural changes of the nucleus of human mesenchymal stem cells as an effect of topographical cues. We use a controlled nanotopography to drive shape changes to the cell nucleus, and measure the changes with both fluorescence microscopy and a novel light scattering technique. The nucleus changes shape dramatically in response to the nanotopography, and in a manner dependent on the mechanical properties of the substrate. The kinetics of the nuclear deformation follows an unexpected trajectory. As opposed to a gradual shape change in response to the topography, once the cytoskeleton attains an aligned and elongation morphology on the time scale of several hours, the nucleus changes shape rapidly and intensely.

摘要

细胞感知其周围微环境中的线索。这些线索被转化为细胞内信号并传导至细胞核,以使细胞做出反应并调整其功能。在细胞核内,会发生结构变化,最终导致基因表达的改变。在本研究中,我们探究了人骨髓间充质干细胞细胞核的结构变化作为拓扑线索的一种效应。我们使用可控的纳米拓扑结构来驱动细胞核的形状变化,并通过荧光显微镜和一种新型光散射技术来测量这些变化。细胞核会响应纳米拓扑结构而显著改变形状,且这种改变方式取决于底物的机械性能。核变形的动力学遵循一条意想不到的轨迹。与响应拓扑结构时逐渐发生的形状变化不同,一旦细胞骨架在数小时的时间尺度上达到排列和伸长形态,细胞核就会迅速且剧烈地改变形状。

相似文献

1
Deformation of stem cell nuclei by nanotopographical cues.
Soft Matter. 2010 Apr 21;6(8):1675-1681. doi: 10.1039/B921206J.
3
Dissecting Physical and Biochemical Effects in Nanotopographical Regulation of Cell Behavior.
ACS Nano. 2023 Feb 14;17(3):2124-2133. doi: 10.1021/acsnano.2c08075. Epub 2023 Jan 20.
4
Nanotopographical Modulation of Cell Function through Nuclear Deformation.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5082-92. doi: 10.1021/acsami.5b10531. Epub 2016 Feb 16.
5
6
Nanotopographical effects on mesenchymal stem cell morphology and phenotype.
J Cell Biochem. 2014 Feb;115(2):380-90. doi: 10.1002/jcb.24673.
7
Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45124-45136. doi: 10.1021/acsami.2c10583. Epub 2022 Sep 29.
8
Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds.
Acta Biomater. 2011 Jan;7(1):57-66. doi: 10.1016/j.actbio.2010.08.007. Epub 2010 Aug 13.
9
Time-Dependent Retention of Nanotopographical Cues in Differentiated Neural Stem Cells.
ACS Biomater Sci Eng. 2019 Aug 12;5(8):3802-3807. doi: 10.1021/acsbiomaterials.8b01057. Epub 2019 Jan 4.
10
Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells.
PLoS One. 2014 Dec 18;9(12):e114698. doi: 10.1371/journal.pone.0114698. eCollection 2014.

引用本文的文献

2
Courtship Ritual of Male and Female Nuclei during Fertilization in Neurospora crassa.
Microbiol Spectr. 2021 Oct 31;9(2):e0033521. doi: 10.1128/Spectrum.00335-21. Epub 2021 Oct 6.
3
Engineered Microsystems for Spheroid and Organoid Studies.
Adv Healthc Mater. 2021 Jan;10(2):e2001284. doi: 10.1002/adhm.202001284. Epub 2020 Nov 13.
4
Quantitative Study of Morphological Features of Stem Cells onto Photopatterned Azopolymer Films.
J Funct Biomater. 2020 Feb 14;11(1):8. doi: 10.3390/jfb11010008.
5
Bio-instructive materials for musculoskeletal regeneration.
Acta Biomater. 2019 Sep 15;96:20-34. doi: 10.1016/j.actbio.2019.07.014. Epub 2019 Jul 11.
6
Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery.
Exp Biol Med (Maywood). 2019 Feb;244(2):100-113. doi: 10.1177/1535370218821060. Epub 2019 Jan 8.
7
Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells.
Biomater Res. 2018 Oct 5;22:32. doi: 10.1186/s40824-018-0141-y. eCollection 2018.
9
Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography.
Engineering (Beijing). 2017 Feb;3(1):36-54. doi: 10.1016/J.ENG.2017.01.014. Epub 2017 Feb 21.
10
Differentiation Potential of Mesenchymal Stem Cells Is Related to Their Intrinsic Mechanical Properties.
Int Neurourol J. 2017 Apr;21(Suppl 1):S24-31. doi: 10.5213/inj.1734856.428. Epub 2017 Apr 21.

本文引用的文献

1
Determining nuclear morphology using an improved angle-resolved low coherence interferometry system.
Opt Express. 2003 Dec 15;11(25):3473-84. doi: 10.1364/oe.11.003473.
2
Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis.
Cancer Res. 2009 Feb 1;69(3):1199-204. doi: 10.1158/0008-5472.CAN-08-3079. Epub 2009 Jan 13.
3
Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells.
Biomaterials. 2009 Feb;30(6):1133-42. doi: 10.1016/j.biomaterials.2008.11.003. Epub 2008 Nov 28.
5
Lifeact: a versatile marker to visualize F-actin.
Nat Methods. 2008 Jul;5(7):605-7. doi: 10.1038/nmeth.1220. Epub 2008 Jun 8.
6
Nuclear shape, mechanics, and mechanotransduction.
Circ Res. 2008 Jun 6;102(11):1307-18. doi: 10.1161/CIRCRESAHA.108.173989.
7
Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.
Biophys J. 2008 Jun;94(12):4948-56. doi: 10.1529/biophysj.107.124107. Epub 2008 Mar 7.
9
The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder.
Nat Mater. 2007 Dec;6(12):997-1003. doi: 10.1038/nmat2013. Epub 2007 Sep 23.
10
Cellular and molecular responses of smooth muscle cells to surface nanotopography.
J Nanosci Nanotechnol. 2007 Aug;7(8):2823-32. doi: 10.1166/jnn.2007.610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验