School of Computing Science, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
PLoS One. 2011 Jan 31;6(1):e15765. doi: 10.1371/journal.pone.0015765.
Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs-a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.
复杂网络的特点是其特定的连接模式(网络模式),但其构建块也可以通过节点模式来识别和描述——即局部网络特征的组合。Costa 等人提出了一种识别单个节点模式的技术(L. D. F. Costa、F. A. Rodrigues、C. C. Hilgetag 和 M. Kaiser,Europhys. Lett.,87,1,2009)。在这里,我们首先提出了对该方法的改进建议,包括如何自动确定其参数。这种自动程序使得对许多网络进行高通量研究成为可能。其次,在不同的网络系列中验证了新的程序。第三,我们提供了一个示例,说明如何使用该方法分析网络时间序列。总之,我们提供了一种系统地发现和分类网络特征节点的可靠方法。与经典的模式分析相比,我们的方法可以识别特定于网络的单个组件(此处:节点)。这些特殊节点,如之前的枢纽节点,可能在现实世界的网络中发挥关键作用。