Suppr超能文献

利用高密度基因分型阵列估计肿瘤中的亲本特异性 DNA 拷贝数。

Estimation of parent specific DNA copy number in tumors using high-density genotyping arrays.

机构信息

Department of Statistics, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2011 Jan 27;7(1):e1001060. doi: 10.1371/journal.pcbi.1001060.

Abstract

Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms. The proposed method does not require matched normal samples, and can estimate the unknown genotypes simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes.

摘要

染色体的增益和缺失是肿瘤中一种重要的遗传变化类型,现在可以使用基于微阵列杂交的实验来检测。大多数用于 DNA 拷贝数估计的当前统计模型都估计总拷贝数,而不能区分两个遗传染色体的潜在数量。这种信息,有时称为亲本特异性拷贝数,对于识别等位基因特异性扩增和缺失、量化正常细胞污染以及为肿瘤提供更完整的分子特征非常重要。我们提出了一种用于肿瘤样本中亲本特异性 DNA 拷贝数的随机分割模型,并提出了一种计算效率高且可应用于当前高密度基因分型平台数据的估计程序。该方法不需要匹配的正常样本,并且可以与亲本特异性拷贝数同时估计未知基因型。新方法用于分析癌症基因组图谱 (TCGA) 项目中的 223 个胶质母细胞瘤样本,为这些样本中的拷贝数事件提供了更全面的总结。对这些样本的详细案例研究揭示了从等位基因特异性拷贝数分析中可以获得的其他见解,例如分数增益和损失的量化、拷贝数中性杂合性丢失的识别以及同时改变两个遗传染色体的区域的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/257f/3029233/aec6d27e3f73/pcbi.1001060.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验