Suppr超能文献

系统评估属于不同结构折叠类别的蛋白质比较模型的准确性。

Systematic assessment of accuracy of comparative model of proteins belonging to different structural fold classes.

机构信息

Department of Chemistry & Biochemistry, South Dakota State University, Box 2202, Brookings, SD 57007, USA.

出版信息

J Mol Model. 2011 Nov;17(11):2831-7. doi: 10.1007/s00894-011-0976-9. Epub 2011 Feb 8.

Abstract

In the absence of experimental structures, comparative modeling continues to be the chosen method for retrieving structural information on target proteins. However, models lack the accuracy of experimental structures. Alignment error and structural divergence (between target and template) influence model accuracy the most. Here, we examine the potential additional impact of backbone geometry, as our previous studies have suggested that the structural class (all-α, αβ, all-β) of a protein may influence the accuracy of its model. In the twilight zone (sequence identity ≤ 30%) and at a similar level of target-template divergence, the accuracy of protein models does indeed follow the trend all-α > αβ > all-β. This is mainly because the alignment accuracy follows the same trend (all-α > αβ > all-β), with backbone geometry playing only a minor role. Differences in the diversity of sequences belonging to different structural classes leads to the observed accuracy differences, thus enabling the accuracy of alignments/models to be estimated a priori in a class-dependent manner. This study provides a systematic description of and quantifies the structural class-dependent effect in comparative modeling. The study also suggests that datasets for large-scale sequence/structure analyses should have equal representations of different structural classes to avoid class-dependent bias.

摘要

在缺乏实验结构的情况下,比较建模仍然是检索目标蛋白结构信息的首选方法。然而,模型缺乏实验结构的准确性。对齐误差和结构差异(在目标和模板之间)对模型准确性的影响最大。在这里,我们研究了骨架几何形状的潜在额外影响,因为我们之前的研究表明,蛋白质的结构类别(全α、αβ、全β)可能会影响其模型的准确性。在黄昏带(序列同一性≤30%)和相似的目标-模板差异水平下,蛋白质模型的准确性确实遵循全α>αβ>全β的趋势。这主要是因为对齐准确性也遵循相同的趋势(全α>αβ>全β),而骨架几何形状只起次要作用。属于不同结构类别的序列多样性的差异导致了观察到的准确性差异,从而能够以前瞻性的方式以类依赖的方式估计对齐/模型的准确性。本研究系统地描述并量化了比较建模中的结构类别依赖性效应。该研究还表明,用于大规模序列/结构分析的数据集应具有不同结构类别相等的代表性,以避免类依赖的偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/209c/3204187/26add469c8c4/nihms276473f1.jpg

相似文献

5
Homology modeling in a dynamical world.动态世界中的同源建模。
Protein Sci. 2017 Nov;26(11):2195-2206. doi: 10.1002/pro.3274. Epub 2017 Sep 28.

本文引用的文献

1
New tips for structure prediction by comparative modeling.通过比较建模进行结构预测的新技巧。
Bioinformation. 2009;3(6):263-7. doi: 10.6026/97320630003263. Epub 2009 Jan 12.
3
Comparative modeling of proteins.蛋白质的比较建模
Methods Mol Biol. 2008;443:199-212. doi: 10.1007/978-1-59745-177-2_11.
5
Evolutionary transitions in protein fold space.蛋白质折叠空间中的进化转变。
Curr Opin Struct Biol. 2007 Jun;17(3):354-61. doi: 10.1016/j.sbi.2007.06.002. Epub 2007 Jun 18.
6
Sequence comparison and protein structure prediction.序列比较与蛋白质结构预测。
Curr Opin Struct Biol. 2006 Jun;16(3):374-84. doi: 10.1016/j.sbi.2006.05.006. Epub 2006 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验