Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.
Mol Pharmacol. 2011 May;79(5):866-73. doi: 10.1124/mol.110.070227. Epub 2011 Feb 8.
Systemic administration of local anesthetics has beneficial perioperative properties and an anesthetic-sparing and antiarrhythmic effect, although the detailed mechanisms of these actions remain unclear. In the present study, we investigated the effects of a local anesthetic, lidocaine, on hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels that contribute to the pacemaker currents in rhythmically oscillating cells of the heart and brain. Voltage-clamp recordings were used to examine the properties of cloned HCN subunit currents expressed in Xenopus laevis oocytes and human embryonic kidney (HEK) 293 cells under control condition and lidocaine administration. Lidocaine inhibited HCN1, HCN2, HCN1-HCN2, and HCN4 channel currents at 100 μM in both oocytes and/or HEK 293 cells; it caused a decrease in both tonic and maximal current (∼30-50% inhibition) and slowed current activation kinetics for all subunits. In addition, lidocaine evoked a hyperpolarizing shift in half-activation voltage (ΔV(1/2) of ∼-10 to -14 mV), but only for HCN1 and HCN1-HCN2 channels. By fitting concentration-response data to logistic functions, we estimated half-maximal (EC(50)) concentrations of lidocaine of ∼30 to 40 μM for the shift in V(1/2) observed with HCN1 and HCN1-HCN2; for inhibition of current amplitude, calculated EC(50) values were ∼50 to 70 μM for HCN1, HCN2, and HCN1-HCN2 channels. A lidocaine metabolite, monoethylglycinexylidide (100 μM), had similar inhibitory actions on HCN channels. These results indicate that lidocaine potently inhibits HCN channel subunits in dose-dependent manner over a concentration range relevant for systemic application. The ability of local anesthetics to modulate I(h) in central neurons may contribute to central nervous system depression, whereas effects on I(f) in cardiac pacemaker cells may contribute to the antiarrhythmic and/or cardiovascular toxic action.
全身给予局部麻醉药具有有益的围手术期特性和麻醉药物节约及抗心律失常作用,尽管这些作用的详细机制尚不清楚。在本研究中,我们研究了局部麻醉药利多卡因对心脏和脑节律性振荡细胞起搏电流的超极化激活和环核苷酸门控(HCN)通道的作用。使用电压钳记录在对照条件下和利多卡因给药下,在非洲爪蟾卵母细胞和人胚肾(HEK)293 细胞中表达的克隆 HCN 亚基电流的特性。100μM 的利多卡因抑制卵母细胞和/或 HEK 293 细胞中的 HCN1、HCN2、HCN1-HCN2 和 HCN4 通道电流;它导致紧张和最大电流(约 30-50%的抑制)下降,并使所有亚基的电流激活动力学减慢。此外,利多卡因诱发半激活电压的超极化移位(约-10 至-14mV 的ΔV1/2),但仅对 HCN1 和 HCN1-HCN2 通道。通过将浓度-反应数据拟合到逻辑函数,我们估计利多卡因对半激活电压(V1/2)的移位的 EC50 浓度约为 30 至 40μM,对于 HCN1 和 HCN1-HCN2 观察到的电流幅度抑制,计算的 EC50 值约为 50 至 70μM 对于 HCN1、HCN2 和 HCN1-HCN2 通道。利多卡因的代谢物,单乙基甘氨酸二甲苯(100μM),对 HCN 通道具有类似的抑制作用。这些结果表明,利多卡因以剂量依赖性方式在与全身应用相关的浓度范围内强烈抑制 HCN 通道亚基。局部麻醉药调节中枢神经元 I(h)的能力可能导致中枢神经系统抑制,而对心脏起搏细胞 I(f)的影响可能导致抗心律失常和/或心血管毒性作用。