School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA.
J Air Waste Manag Assoc. 2011 Jan;61(1):69-77. doi: 10.3155/1047-3289.61.1.69.
Developing exposure estimates is a challenging aspect of investigating the health effects of air pollution. Pollutant levels recorded at centrally located ambient air quality monitors in a community are commonly used as proxies for population exposures. However, if ample intraurban spatial variation in pollutants exists, city-wide averages of concentrations may introduce exposure misclassification. We assessed spatial heterogeneity of particulate matter with an aerodynamic diameter < or = 10 microm (PM10) and ozone (O3) and evaluated implications for epidemiological studies in São Paulo, Brazil, using daily (24-hr) and daytime (12-hr) averages and 1-hr daily maximums of pollutant levels recorded at the regulatory monitoring network. Monitor locations were also analyzed with respect to a socioeconomic status index developed by the municipal government. Hourly PM10 and O3 data for the Sāo Paulo Municipality and Metropolitan Region (1999-2006) were used to evaluate heterogeneity by comparing distance between monitors with pollutants' correlations and coefficients of divergence (CODs). Both pollutants showed high correlations across monitoring sites (median = 0.8 for daily averages). CODs across sites averaged 0.20. Distance was a good predictor of CODs for PM10 (p < 0.01) but not O3, whereas distance was a good predictor of correlations for O3 (p < 0.01) but not PM10. High COD values and low temporal correlation indicate a spatially heterogeneous distribution of PM10. Ozone levels were highly correlated (r > or = 0.75), but high CODs suggest that averaging over O3 levels may obscure important spatial variations. Of municipal districts in the highest of five socioeconomic groups, 40% have > or = 1 monitor, whereas districts in the lowest two groups, representing half the population, have no monitors. Results suggest that there is a potential for exposure misclassification based on the available monitoring network and that spatial heterogeneity depends on pollutant metric (e.g., daily average vs. daily 1-hr maximum). A denser monitoring network or alternative exposure methods may be needed for epidemiological research. Findings demonstrate the importance of considering spatial heterogeneity and differential exposure misclassification by subpopulation.
开展暴露评估是研究空气污染对健康影响的一个具有挑战性的方面。通常,社区中位于中心位置的环境空气质量监测器记录的污染物水平被用作人群暴露的代理。然而,如果城市中存在大量的污染物空间变异,那么城市范围内的浓度平均值可能会导致暴露分类错误。我们评估了粒径小于或等于 10 微米的颗粒物(PM10)和臭氧(O3)的空间异质性,并使用在监管监测网络中记录的污染物每日(24 小时)和白天(12 小时)平均值以及每日 1 小时最大值,评估了其对巴西圣保罗市的流行病学研究的影响。监测点的位置还根据市政府制定的社会经济地位指数进行了分析。使用 2006 年圣保罗市和大都市区的 PM10 和 O3 逐小时数据(1999-2006 年),通过比较监测点之间的距离与污染物的相关性和离散系数(COD),评估了异质性。两种污染物在监测点之间的相关性均很高(每日平均值中位数为 0.8)。各监测点的 COD 平均值为 0.20。距离是 PM10 的 COD 的良好预测因子(p < 0.01),但不是 O3 的预测因子,而距离是 O3 的相关性的良好预测因子(p < 0.01),但不是 PM10 的预测因子。高 COD 值和低时间相关性表明 PM10 呈空间异质分布。臭氧水平高度相关(r >或= 0.75),但 COD 较高表明,臭氧水平的平均值可能会掩盖重要的空间变化。在五个社会经济群体中最高的群体的 40%的市辖区中,有 >或= 1 个监测器,而代表一半人口的最低两个群体的市辖区中,没有监测器。结果表明,基于现有的监测网络,存在暴露分类错误的可能性,并且空间异质性取决于污染物指标(例如,每日平均值与每日 1 小时最大值)。可能需要更密集的监测网络或替代暴露方法来进行流行病学研究。研究结果表明,考虑到空间异质性和亚人群的不同暴露分类错误非常重要。