Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Biomaterials. 2011 May;32(13):3487-98. doi: 10.1016/j.biomaterials.2011.01.046.
Dysregulated inflammation contributes to the pathogenesis of various diseases. Therapeutic efficacy of anti-inflammatory agents, however, falls short against resilient inflammatory responses, whereas long-term and high-dose systemic administration can cause adverse side effects. Site-directed drug delivery systems would thus render more effective and safer treatments by increasing local dosage and minimizing toxicity. Nonetheless, achieving clinically effective targeted delivery to inflammatory sites has been difficult due to diverse cellular players involved in immunity and endogenous targets being expressed at basal levels. Here we exploit a physiological molecular interaction between intercellular adhesion molecule (ICAM)-1 and lymphocyte function associated antigen (LFA)-1 to deliver a potent anti-inflammatory drug, celastrol, specifically and comprehensively to inflamed cells. We found that affinity and avidity adjusted inserted (I) domain, the major binding site of LFA-1, on liposome surface enhanced the specificity toward lipopolysaccharides (LPS)-treated or inflamed endothelial cells (HMEC-1) and monocytes (THP-1) via ICAM-1 overexpression, reflecting inherent affinity and avidity modulation of these molecules in physiology. Targeted delivery of celastrol protected cells from recurring LPS challenges, suppressing pro-inflammatory responses and inflammation-induced cell proliferation. Targeted delivery also blocked THP-1 adhesion to inflamed HMEC-1, forming barriers to immune cell accumulation and to aggravating inflammatory signals. Our results demonstrate affinity and avidity of targeting moieties on nanoparticles as important design parameters to ensure specificity and avoid toxicities. We anticipate that such tunable physiologic interactions could be used for designing effective drug carriers for in vivo applications and contribute to treating a range of immune and inflammatory diseases.
失调的炎症反应会导致多种疾病的发生。然而,抗炎药物的治疗效果并不理想,因为其无法应对顽固的炎症反应,而且长期和大剂量的系统给药会引起不良反应。因此,通过增加局部剂量和最小化毒性,靶向药物输送系统可以提供更有效和更安全的治疗方法。尽管如此,由于免疫过程中涉及多种细胞成分,并且内源性靶点的表达水平较低,因此实现针对炎症部位的临床有效靶向输送仍然具有挑战性。在这里,我们利用细胞间黏附分子(ICAM)-1 和淋巴细胞功能相关抗原(LFA)-1 之间的生理分子相互作用,将一种有效的抗炎药物,雷公藤红素,特异性和全面地递送到炎症细胞中。我们发现,通过过度表达 ICAM-1,在脂质体表面上调整亲和力和结合价的插入(I)结构域(LFA-1 的主要结合位点),可以增强其对脂多糖(LPS)处理或炎症内皮细胞(HMEC-1)和单核细胞(THP-1)的特异性,这反映了这些分子在生理过程中的固有亲和力和结合价的调节。雷公藤红素的靶向递送可以保护细胞免受反复的 LPS 挑战,抑制促炎反应和炎症诱导的细胞增殖。靶向递送还可以阻止 THP-1 黏附到炎症 HMEC-1 上,形成免疫细胞聚集和加剧炎症信号的障碍。我们的结果表明,纳米颗粒上靶向部分的亲和力和结合价是确保特异性和避免毒性的重要设计参数。我们预计,这种可调节的生理相互作用可以用于设计有效的药物载体,用于体内应用,并有助于治疗一系列免疫和炎症性疾病。