Suppr超能文献

用于模拟微血管中细胞-细胞和颗粒-细胞相互作用的微流控装置。

Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.

机构信息

Biomedical Technology, CFD Research Corporation, 215 Wynn Dr., Huntsville, AL 35805, USA.

出版信息

Microvasc Res. 2011 Nov;82(3):210-20. doi: 10.1016/j.mvr.2011.06.013. Epub 2011 Jul 2.

Abstract

Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, developing of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and computational fluid dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature is highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place is discussed.

摘要

细胞-流体和细胞-细胞相互作用是微血管中许多生理和病理条件的关键组成部分。同样,颗粒-细胞相互作用在靶向递送到组织的治疗中起着重要作用。开发体外流体设备来模拟这些微循环过程是我们理解炎症过程、开发纳米颗粒药物载体以及开发微血管及其周围组织的现实体外模型的重要一步。然而,基于平行板流动的广泛使用的设备和检测方法在研究体内生理条件方面存在许多重要的局限性。此外,这些设备在进行各种检测时需要大量的资源和时间。最近开发的更现实的基于微流控的设备已经能够克服许多这些局限性。在这篇综述中,介绍了流体设备及其在研究剪切力对细胞-细胞和细胞-颗粒相互作用的影响中的应用。此外,还强调了使用数学模型和基于计算流体动力学 (CFD) 的模型来解释微血管中复杂的流动模式。最后,讨论了 3D 微流控设备和成像在更好地代表细胞-细胞和细胞-颗粒相互作用发生的体内条件方面的潜力。

相似文献

1
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.
Microvasc Res. 2011 Nov;82(3):210-20. doi: 10.1016/j.mvr.2011.06.013. Epub 2011 Jul 2.
2
Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
Microvasc Res. 2016 Nov;108:41-7. doi: 10.1016/j.mvr.2016.07.005. Epub 2016 Jul 14.
3
Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
Microvasc Res. 2018 Mar;116:77-86. doi: 10.1016/j.mvr.2017.09.003. Epub 2017 Sep 14.
4
Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
Microvasc Res. 2014 Jul;94:17-27. doi: 10.1016/j.mvr.2014.04.008. Epub 2014 Apr 29.
5
6
Adhesion patterns in the microvasculature are dependent on bifurcation angle.
Microvasc Res. 2015 May;99:19-25. doi: 10.1016/j.mvr.2015.02.004. Epub 2015 Feb 21.
7
Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice Boltzmann method play?
Integr Biol (Camb). 2016 May 16;8(5):589-602. doi: 10.1039/c6ib00009f. Epub 2016 Apr 12.
8
Preferential adhesion of leukocytes near bifurcations is endothelium independent.
Microvasc Res. 2010 Dec;80(3):384-8. doi: 10.1016/j.mvr.2010.07.001. Epub 2010 Jul 21.
9
Synthetic microvascular networks for quantitative analysis of particle adhesion.
Biomed Microdevices. 2008 Aug;10(4):585-95. doi: 10.1007/s10544-008-9170-y.
10
Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels.
Langmuir. 2013 Feb 26;29(8):2530-5. doi: 10.1021/la304746p. Epub 2013 Feb 8.

引用本文的文献

2
Microengineered In Vitro Assays for Screening and Sorting Manufactured Therapeutic T Cells.
J Immunol. 2024 Jan 15;212(2):199-207. doi: 10.4049/jimmunol.2300488.
3
Cell Chirality as a Novel Measure for Cytotoxicity.
Adv Biol (Weinh). 2022 Jan;6(1):e2101088. doi: 10.1002/adbi.202101088. Epub 2021 Nov 19.
5
In Vitro Strategies to Vascularize 3D Physiologically Relevant Models.
Adv Sci (Weinh). 2021 Oct;8(19):e2100798. doi: 10.1002/advs.202100798. Epub 2021 Aug 5.
6
3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments.
Ann Biomed Eng. 2021 Jul;49(7):1598-1618. doi: 10.1007/s10439-021-02784-1. Epub 2021 May 17.
7
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies.
Radiother Oncol. 2021 May;158:21-32. doi: 10.1016/j.radonc.2021.02.007. Epub 2021 Feb 11.
8
Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network.
Small. 2020 Aug;16(33):e2002861. doi: 10.1002/smll.202002861. Epub 2020 Jun 25.
10
Neutrophil-endothelial interactions of murine cells is not a good predictor of their interactions in human cells.
FASEB J. 2020 Feb;34(2):2691-2702. doi: 10.1096/fj.201900048R. Epub 2019 Dec 23.

本文引用的文献

1
Bifurcations: focal points of particle adhesion in microvascular networks.
Microcirculation. 2011 Jul;18(5):380-9. doi: 10.1111/j.1549-8719.2011.00099.x.
2
Tunable physiologic interactions of adhesion molecules for inflamed cell-selective drug delivery.
Biomaterials. 2011 May;32(13):3487-98. doi: 10.1016/j.biomaterials.2011.01.046.
3
Biomimetic design of artificial micro-vasculatures for tissue engineering.
Altern Lab Anim. 2010 Dec;38 Suppl 1:67-79. doi: 10.1177/026119291003801S02.
4
Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.
Lab Chip. 2011 Feb 21;11(4):700-7. doi: 10.1039/c0lc00158a. Epub 2010 Dec 13.
5
A transferrin receptor-targeted liposomal formulation for docetaxel.
J Nanosci Nanotechnol. 2010 Aug;10(8):5129-36. doi: 10.1166/jnn.2010.2393.
6
A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
Lab Chip. 2011 Feb 7;11(3):545-51. doi: 10.1039/c0lc00093k. Epub 2010 Nov 16.
7
Platelet-leukocyte interactions in cardiovascular disease and beyond.
Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2357-61. doi: 10.1161/ATVBAHA.110.207480. Epub 2010 Nov 11.
9
A comparison of imaging methodologies for 3D tissue engineering.
Microsc Res Tech. 2010 Dec;73(12):1123-33. doi: 10.1002/jemt.20859.
10
Virus engineering: functionalization and stabilization.
Protein Eng Des Sel. 2011 Jan;24(1-2):53-63. doi: 10.1093/protein/gzq069. Epub 2010 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验