Department of Biology, Indiana University, Bloomington, IN 47405, USA.
Development. 2011 Mar;138(6):1087-92. doi: 10.1242/dev.048645. Epub 2011 Feb 9.
The N-terminal head domain of kinesin heavy chain (Khc) is well known for generating force for transport along microtubules in cytoplasmic organization processes during metazoan development, but the functions of the C-terminal tail are not clear. To address this, we studied the effects of tail mutations on mitochondria transport, determinant mRNA localization and cytoplasmic streaming in Drosophila. Our results show that two biochemically defined elements of the tail - the ATP-independent microtubule-binding sequence and the IAK autoinhibitory motif - are essential for development and viability. Both elements have positive functions in the axonal transport of mitochondria and determinant mRNA localization in oocytes, processes that are accomplished by biased saltatory movement of individual cargoes. Surprisingly, there were no indications that the IAK autoinhibitory motif acts as a general downregulator of Kinesin-1 in those processes. Time-lapse imaging indicated that neither tail region is needed for fast cytoplasmic streaming in oocytes, which is a non-saltatory bulk transport process driven solely by Kinesin-1. Thus, the Khc tail is not constitutively required for Kinesin-1 activation, force transduction or linkage to cargo. It might instead be crucial for more subtle elements of motor control and coordination in the stop-and-go movements of biased saltatory transport.
驱动蛋白重链(Khc)的 N 端头部结构域在真核生物发育过程中细胞质组织的运输过程中,因能为沿微管的运输生成力而广为人知,但 C 端尾部的功能尚不清楚。为了解决这个问题,我们研究了尾部突变对果蝇中线粒体运输、决定mRNA 定位和细胞质流动的影响。我们的结果表明,尾部的两个生化定义元素 - 非依赖于 ATP 的微管结合序列和 IAK 自动抑制基序 - 对发育和生存是必需的。这两个元素在线粒体和决定 mRNA 定位的轴突运输中都具有积极的功能,这些过程是通过单个货物的偏向跳跃运动来完成的。令人惊讶的是,没有迹象表明 IAK 自动抑制基序在这些过程中作为 Kinesin-1 的一般下调因子发挥作用。延时成像表明,尾部区域都不需要卵母细胞中的快速细胞质流动,这是一种由 Kinesin-1 单独驱动的非跳跃式整体运输过程。因此,Khc 尾部并不是 Kinesin-1 激活、力传递或与货物连接所必需的。相反,它可能对偏向跳跃运输的停停走走运动中的更微妙的运动控制和协调元素至关重要。