Avenir/INSERM and Fondation pour la Recherche Médicale Team "Development and Plasticity of Neural Networks," Université Pierre et Marie Curie (UPMC) Paris 06, Unité Mixte de Recherche (UMR) 7102, Paris, France.
J Neurosci. 2011 Feb 9;31(6):2205-15. doi: 10.1523/JNEUROSCI.5514-10.2011.
The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.
脆性 X 智力低下蛋白(FMRP)是一种 RNA 结合蛋白,对神经元 mRNA 代谢的多个方面至关重要。其缺失会导致脆性 X 综合征,这是最常见的遗传性智力低下形式。该疾病的解剖学标志,也存在于 Fmr1 敲除(KO)小鼠中,是不成熟外观的延长树突棘的过度丰富。我们利用小鼠嗅球(OB)中成年新生颗粒细胞(GCs)的持续产生,分析了 Fmrp 缺失对 GCs 分化的影响。Fmr1 KO 小鼠 GCs 的形态分析显示,棘密度增加而棘长度不变。我们开发了一种 RNA 干扰策略,在野生型 OB 网络中细胞自主突变 Fmr1。突变的 GCs 显示出棘密度和棘长度的增加。通过免疫组织化学、电子显微镜和电生理学对棘突进行的详细分析令人惊讶地表明,尽管存在这些异常,棘突仍接收正常的谷氨酸能突触,因此突变的成年新生神经元被突触整合到 OB 回路中。对棘突缺陷的时间进程分析表明,Fmrp 细胞自主地下调棘突生成的水平和速度,并限制其过度生长。最后,我们报告 Fmrp 不会在标准条件下调节树突发生,但对于活性依赖性树突重塑是必需的。总体而言,我们在成年神经发生背景下对 Fmrp 的研究使我们能够精确剖析 Fmrp 在神经元分化中的作用,并强调其在 spinogenesis 和 dendritogenesis 中的多效性参与。