Suppr超能文献

反义抑制琥珀酸脱氢酶的铁硫亚单位通过对气孔开度的有机酸介导效应增强番茄的光合作用和生长。

Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture.

机构信息

Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany.

出版信息

Plant Cell. 2011 Feb;23(2):600-27. doi: 10.1105/tpc.110.081224. Epub 2011 Feb 9.

Abstract

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.

摘要

反义表达 Sl SDH2-2 基因片段(编码琥珀酸脱氢酶蛋白复合物铁硫亚基)的转基因番茄(Solanum lycopersicum)植株在 35S 启动子的控制下表现出增强的光合作用速率。这些转化体中三羧酸(TCA)循环的速率降低,与 TCA 循环相关的代谢物水平也发生了变化。此外,与野生型植物相比,在环境条件下,转基因植物的二氧化碳同化率提高了 25%,成熟植物的生物量增加。对其他光合作用参数的分析表明,转基因植物的蒸腾速率和气孔导度明显升高。在环境条件和非最佳环境条件下,转化体均表现出强烈增强的同化率,以及气孔最大开度的升高。相比之下,当 Sl SDH2-2 基因以 guard cell-specific 的方式被反义 RNA 抑制时,气孔开度和光合作用均未发生变化。所得数据在 TCA 循环中间产物普遍影响光合作用代谢,以及具体影响气孔开度调节的背景下进行了讨论。

相似文献

2
Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function.
Plant J. 2007 Jun;50(6):1093-106. doi: 10.1111/j.1365-313X.2007.03115.x. Epub 2007 Apr 25.
6
Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity.
Plant Cell Environ. 2012 Apr;35(4):747-59. doi: 10.1111/j.1365-3040.2011.02448.x. Epub 2011 Nov 23.
7
The contribution of photosynthesis to the red light response of stomatal conductance.
Plant Physiol. 2008 Feb;146(2):737-47. doi: 10.1104/pp.107.110924. Epub 2007 Dec 7.
9
Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):533-8. doi: 10.1073/pnas.1305438111. Epub 2013 Dec 23.

引用本文的文献

2
ClaPEPCK4: target gene for breeding innovative watermelon germplasm with low malic acid and high sweetness.
GM Crops Food. 2025 Dec;16(1):156-170. doi: 10.1080/21645698.2025.2452702. Epub 2025 Jan 14.
3
Natural variation in the chickpea metabolome under drought stress.
Plant Biotechnol J. 2024 Dec;22(12):3278-3294. doi: 10.1111/pbi.14447. Epub 2024 Oct 16.
5
CAM evolution is associated with gene family expansion in an explosive bromeliad radiation.
Plant Cell. 2024 Oct 3;36(10):4109-4131. doi: 10.1093/plcell/koae130.
6
Ketocarotenoid production in tomato triggers metabolic reprogramming and cellular adaptation: The quest for homeostasis.
Plant Biotechnol J. 2024 Feb;22(2):427-444. doi: 10.1111/pbi.14196. Epub 2023 Nov 30.
8
Leaf starch metabolism sets the phase of stomatal rhythm.
Plant Cell. 2023 Sep 1;35(9):3444-3469. doi: 10.1093/plcell/koad158.
9
Non-canonical and developmental roles of the TCA cycle in plants.
Curr Opin Plant Biol. 2023 Aug;74:102382. doi: 10.1016/j.pbi.2023.102382. Epub 2023 May 19.
10
Sweet potato NAC transcription factor negatively regulates plant growth by causing leaf curling and reducing photosynthetic efficiency.
Front Plant Sci. 2023 Feb 21;14:1095977. doi: 10.3389/fpls.2023.1095977. eCollection 2023.

本文引用的文献

1
Mechanisms of action of abscisic acid at the cellular level.
New Phytol. 1991 Sep;119(1):9-12. doi: 10.1111/j.1469-8137.1991.tb01004.x.
2
Preparation and applications of Arabidopsis thaliana guard cell protoplasts.
New Phytol. 2002 Mar;153(3):517-526. doi: 10.1046/j.0028-646X.2001.00329.x. Epub 2002 Mar 5.
3
The control of source to sink carbon flux during tuber development in potato.
Plant J. 1998 Sep;15(5):697-706. doi: 10.1046/j.1365-313x.1998.00247.x.
4
Photometric method for routine determination of kcat and carbamylation of rubisco.
Photosynth Res. 1991 Apr;28(1):41-8. doi: 10.1007/BF00027175.
8
Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis.
Plant Physiol. 2011 Jan;155(1):101-7. doi: 10.1104/pp.110.163816. Epub 2010 Oct 21.
9
AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells.
Plant J. 2010 Sep;63(6):1054-62. doi: 10.1111/j.1365-313X.2010.04302.x.
10
Not just a circle: flux modes in the plant TCA cycle.
Trends Plant Sci. 2010 Aug;15(8):462-70. doi: 10.1016/j.tplants.2010.05.006. Epub 2010 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验