Faculty of Sport, Pablo de Olavide University, Seville, Spain.
Med Sci Sports Exerc. 2011 Sep;43(9):1725-34. doi: 10.1249/MSS.0b013e318213f880.
This study aimed to analyze the acute mechanical and metabolic response to resistance exercise protocols (REP) differing in the number of repetitions (R) performed in each set (S) with respect to the maximum predicted number (P).
Over 21 exercise sessions separated by 48-72 h, 18 strength-trained males (10 in bench press (BP) and 8 in squat (SQ)) performed 1) a progressive test for one-repetition maximum (1RM) and load-velocity profile determination, 2) tests of maximal number of repetitions to failure (12RM, 10RM, 8RM, 6RM, and 4RM), and 3) 15 REP (S × R[P]: 3 × 6[12], 3 × 8[12], 3 × 10[12], 3 × 12[12], 3 × 6[10], 3 × 8[10], 3 × 10[10], 3 × 4[8], 3 × 6[8], 3 × 8[8], 3 × 3[6], 3 × 4[6], 3 × 6[6], 3 × 2[4], 3 × 4[4]), with 5-min interset rests. Kinematic data were registered by a linear velocity transducer. Blood lactate and ammonia were measured before and after exercise.
Mean repetition velocity loss after three sets, loss of velocity pre-post exercise against the 1-m·s load, and countermovement jump height loss (SQ group) were significant for all REP and were highly correlated to each other (r = 0.91-0.97). Velocity loss was significantly greater for BP compared with SQ and strongly correlated to peak postexercise lactate (r = 0.93-0.97) for both SQ and BP. Unlike lactate, ammonia showed a curvilinear response to loss of velocity, only increasing above resting levels when R was at least two repetitions higher than 50% of P.
Velocity loss and metabolic stress clearly differs when manipulating the number of repetitions actually performed in each training set. The high correlations found between mechanical (velocity and countermovement jump height losses) and metabolic (lactate, ammonia) measures of fatigue support the validity of using velocity loss to objectively quantify neuromuscular fatigue during resistance training.
本研究旨在分析不同重复次数(R)的阻力训练方案(REP)对急性机械和代谢反应的影响,这些 REP 涉及到每组(S)中完成的最大预测次数(P)的重复次数。
在 21 次运动训练课程中,18 名力量训练男性(10 名进行卧推(BP),8 名进行深蹲(SQ))分别进行了 1)最大重复次数 1 次的递增测试(1RM)和负荷-速度曲线的确定,2)最大重复次数至失败的测试(12RM、10RM、8RM、6RM 和 4RM),以及 3)15 次 REP(S × R[P]:3 × 6[12]、3 × 8[12]、3 × 10[12]、3 × 12[12]、3 × 6[10]、3 × 8[10]、3 × 10[10]、3 × 4[8]、3 × 6[8]、3 × 8[8]、3 × 3[6]、3 × 4[6]、3 × 6[6]、3 × 2[4]、3 × 4[4]),每组之间有 5 分钟的间歇休息。运动数据由线性速度传感器记录。运动前后测量血乳酸和氨。
三组后平均重复速度损失、运动前后与 1 米/秒负荷相比的速度损失以及深蹲组的反向跳跃高度损失,对所有 REP 均有显著影响,且彼此高度相关(r = 0.91-0.97)。与深蹲相比,卧推的速度损失明显更大,与两者的峰值运动后血乳酸呈高度相关(r = 0.93-0.97)。与乳酸不同,氨的反应呈曲线变化,只有当 R 至少比 P 的 50%高两个重复次数时,氨的水平才会高于静息水平。
当操纵每组实际完成的重复次数时,速度损失和代谢压力明显不同。在力量训练过程中,使用速度损失来客观量化神经肌肉疲劳时,发现机械(速度和反向跳跃高度损失)和代谢(乳酸、氨)测量之间的高度相关性,支持了其有效性。