Departments of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, 1828585, Japan.
J Physiol Sci. 2011 May;61(3):181-9. doi: 10.1007/s12576-011-0134-2. Epub 2011 Feb 11.
Voluntary muscle contractions activate sympathetic efferent pathways. Using a fatiguing electrical stimulation protocol designed specifically to enhance sympathetically-mediated vasoconstrictor tone, we explored the temporal profile and mechanistic bases of the evoked vasoconstrictor response and its role in muscle fatigue. Spinotrapezius muscles of Wistar rats were exteriorized and stimulated tetanically (100 Hz, 6-8 V, stimulus duration 700 ms) every 3 s for 2.5 min. The extent and time course of diameter changes in arterioles (1A and 2A) and venules (1V and 2V) were determined after each of 10 discrete sets of muscle stimulation at 5-min intervals. At first, to compare the effect of stimulation parameters in this preparation, stimulations were performed with rectangular pulses of either 0.2- or 4-ms pulse duration. As expected the 0.2-ms pulse stimulation did not affect arteriolar diameter or muscle fatigability. In contrast, during and following 4-ms pulse stimulations, there was a surprising arteriolar vasoconstriction rather than the expected vasodilation. Arteriolar (but not venular) vasoconstriction (reduced arteriolar diameter by 38.6 ± 2.6% in the 10th set) increased progressively with muscle fatigue (to 29 ± 12% of initial tension in the 10th set) for the 4-ms pulse condition. Superfusion with the selective α1-adrenergic receptor antagonist prazosin (1 μM) and/or α2-adrenergic receptor antagonist rauwolscine (10 μM) abolished both the arteriolar vasoconstriction and significantly reduced fatigue (i.e., % initial tension, α1: 46.8 ± 10.3%; α2: 39.0 ± 5.8%; α1 + α2: 48.7 ± 16.3% in the 10th set; all P < 0.05 vs. control). We conclude that sequential bouts of contractions induce a progressively greater degree of α-adrenergic receptor-induced arteriolar (but not venular) vasoconstriction which contributes significantly to fatigue in this model.
自愿性肌肉收缩会激活交感传出通路。我们使用专门设计用于增强交感神经介导的血管收缩张力的疲劳性电刺激方案,探索了诱发的血管收缩反应的时间特征和机制基础及其在肌肉疲劳中的作用。将 Wistar 大鼠的斜方肌外展并以 100 Hz、6-8 V 的刺激强度进行 700 ms 的强直刺激,每 3 s 刺激一次,持续 2.5 分钟。在 5 分钟的间隔内,每 10 次离散的肌肉刺激后,确定小动脉(1A 和 2A)和小静脉(1V 和 2V)直径变化的程度和时程。首先,为了比较该方案中刺激参数的效果,使用 0.2-或 4-ms 脉冲宽度的矩形脉冲进行刺激。正如预期的那样,0.2-ms 脉冲刺激不会影响小动脉直径或肌肉疲劳性。相比之下,在 4-ms 脉冲刺激期间和之后,令人惊讶的是小动脉发生了收缩,而不是预期的扩张。小动脉(而非小静脉)收缩(第 10 组中,小动脉直径减少 38.6 ± 2.6%)随着肌肉疲劳而逐渐增加(第 10 组中,初始张力的 29 ± 12%)对于 4-ms 脉冲条件。用选择性 α1-肾上腺素能受体拮抗剂哌唑嗪(1 μM)和/或 α2-肾上腺素能受体拮抗剂雷唑林(10 μM)灌流可消除小动脉收缩并显著降低疲劳程度(即,初始张力的百分比,α1:46.8 ± 10.3%;α2:39.0 ± 5.8%;α1+α2:48.7 ± 16.3%在第 10 组中;所有 P<0.05 与对照组相比)。我们得出结论,连续的收缩会引起逐渐增强的α-肾上腺素能受体诱导的小动脉(而非小静脉)收缩程度,这在该模型中对疲劳有显著贡献。