Suppr超能文献

神经元和神经内分泌细胞中用于突触和颗粒蛋白分拣的独特的高尔基网络亚区室。

A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells.

机构信息

Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Cell Sci. 2011 Mar 1;124(Pt 5):735-44. doi: 10.1242/jcs.076372.

Abstract

Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block-release experiments showed that VAChT-GFP, SYN-GFP and CgA-RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.

摘要

在未分化的神经内分泌 PC12 细胞中,研究了突触样微囊泡(SLMV)蛋白、囊泡乙酰胆碱转运体(VAChT)和突触小体蛋白(SYN)以及大致密核心囊泡(LDCV)蛋白嗜铬粒蛋白 A(CgA)的高尔基体内质网向质膜转运。活细胞成像和 20°C 阻断释放实验表明,VAChT-GFP、SYN-GFP 和 CgA-RFP 在冷阻断期间特异性且短暂地共同存在于一个特定的分选隔室中,然后在从温度阻断中释放后分离成突触蛋白转运小泡(SPTV)和 LDCV。我们发现,在这个跨高尔基亚隔室中,SPTV 和 LDCV 蛋白发生共定位,与 VAMP4 和 Golgin97 的共定位最显著,与 TGN46 有一定程度的共定位,但与 TGN38 完全没有共定位。此外,一些 SNAP25 和 VAMP2,即外排机制的两个亚基,也被招募到这个隔室。因此,在神经内分泌细胞中,突触囊泡和 LDCV 蛋白在分选进入 SPTV 和 LDCV 之前,在一个独特的高尔基网络亚隔室中短暂汇聚,最终用于递送至质膜。这个从 SPTV 和 LDCV 出芽的特化分选隔室可能有助于获得这些囊泡膜上所需的常见外排机制。

相似文献

3
Local protein dynamics during microvesicle exocytosis in neuroendocrine cells.
Mol Biol Cell. 2018 Aug 1;29(15):1891-1903. doi: 10.1091/mbc.E17-12-0716. Epub 2018 Jun 6.
5
Synaptophysin I selectively specifies the exocytic pathway of synaptobrevin 2/VAMP2.
Biochem J. 2007 Jun 15;404(3):525-34. doi: 10.1042/BJ20061907.
6
The vesicular monoamine transporter 2 contains trafficking signals in both its N-glycosylation and C-terminal domains.
J Neurochem. 2007 Mar;100(5):1387-96. doi: 10.1111/j.1471-4159.2006.04326.x. Epub 2007 Jan 8.
10
Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi.
Nat Commun. 2018 Aug 24;9(1):3421. doi: 10.1038/s41467-018-05699-z.

引用本文的文献

1
SNARE Proteins Mediate α-Synuclein Secretion via Multiple Vesicular Pathways.
Mol Neurobiol. 2022 Jan;59(1):405-419. doi: 10.1007/s12035-021-02599-0. Epub 2021 Oct 27.
2
TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47.
Cell Rep. 2021 Feb 9;34(6):108743. doi: 10.1016/j.celrep.2021.108743.
5
New approaches for solving old problems in neuronal protein trafficking.
Mol Cell Neurosci. 2018 Sep;91:48-66. doi: 10.1016/j.mcn.2018.04.004. Epub 2018 Apr 10.
6
Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins.
Mol Biol Cell. 2018 Apr 15;29(8):937-947. doi: 10.1091/mbc.E17-11-0622. Epub 2018 Mar 30.
7
UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes.
PLoS Genet. 2017 Nov 16;13(11):e1007100. doi: 10.1371/journal.pgen.1007100. eCollection 2017 Nov.
9
Retrograde trafficking of VMAT2 and its role in protein stability in non-neuronal cells.
J Biomed Res. 2016 Nov;30(6):502-509. doi: 10.7555/JBR.30.20160061. Epub 2016 Jun 16.
10
The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior.
Curr Biol. 2016 Apr 4;26(7):862-71. doi: 10.1016/j.cub.2016.01.049. Epub 2016 Mar 3.

本文引用的文献

1
How peptide hormone vesicles are transported to the secretion site for exocytosis.
Mol Endocrinol. 2008 Dec;22(12):2583-95. doi: 10.1210/me.2008-0209. Epub 2008 Jul 31.
3
Dense-core secretory granule biogenesis.
Physiology (Bethesda). 2006 Apr;21:124-33. doi: 10.1152/physiol.00043.2005.
4
Dynamics of secretory membrane trafficking.
Ann N Y Acad Sci. 2004 Dec;1038:115-24. doi: 10.1196/annals.1315.019.
5
A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis.
J Biol Chem. 2005 Jan 21;280(3):1944-52. doi: 10.1074/jbc.M409528200. Epub 2004 Nov 9.
6
Protein kinase A affects trafficking of the vesicular monoamine transporters in PC12 cells.
Traffic. 2004 Dec;5(12):1006-16. doi: 10.1111/j.1600-0854.2004.00240.x.
7
Vesicular localization and activity-dependent trafficking of presynaptic choline transporters.
J Neurosci. 2003 Oct 29;23(30):9697-709. doi: 10.1523/JNEUROSCI.23-30-09697.2003.
8
Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles.
Mol Biol Cell. 2003 Dec;14(12):4909-19. doi: 10.1091/mbc.e03-06-0380. Epub 2003 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验