Suppr超能文献

自动化示踪蛋白轨迹分析用于研究分泌颗粒的轴突运输。

Automated kymograph analysis for profiling axonal transport of secretory granules.

机构信息

Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Med Image Anal. 2011 Jun;15(3):354-67. doi: 10.1016/j.media.2010.12.005. Epub 2010 Dec 30.

Abstract

This paper describes an automated method to profile the velocity patterns of small organelles (BDNF granules) being transported along a selected section of axon of a cultured neuron imaged by time-lapse fluorescence microscopy. Instead of directly detecting the granules as in conventional tracking, the proposed method starts by generating a two-dimensional spatio-temporal map (kymograph) of the granule traffic along an axon segment. Temporal sharpening during the kymograph creation helps to highlight granule movements while suppressing clutter due to stationary granules. A voting algorithm defined over orientation distribution functions is used to refine the locations and velocities of the granules. The refined kymograph is analyzed using an algorithm inspired from the minimum set cover framework to generate multiple motion trajectories of granule transport paths. The proposed method is computationally efficient, robust to significant levels of noise and clutter, and can be used to capture and quantify trends in transport patterns quickly and accurately. When evaluated on a collection of image sequences, the proposed method was found to detect granule movement events with 94% recall rate and 82% precision compared to a time-consuming manual analysis. Further, we present a study to evaluate the efficacy of velocity profiling by analyzing the impact of oxidative stress on granule transport in which the fully automated analysis correctly reproduced the biological conclusion generated by manual analysis.

摘要

本文描述了一种自动化的方法,可以对在延时荧光显微镜成像的培养神经元的轴突选定部位沿轴突运输的小细胞器(BDNF 颗粒)的速度模式进行分析。与传统的跟踪方法不同,该方法不是直接检测颗粒,而是首先生成颗粒在轴突段上的二维时空图谱(速度图)。在创建速度图的过程中进行时间锐化有助于突出颗粒的运动,同时抑制由于静止颗粒引起的杂波。定义在方向分布函数上的投票算法用于精化颗粒的位置和速度。使用受最小集合覆盖框架启发的算法对精化的速度图进行分析,以生成颗粒运输路径的多个运动轨迹。该方法计算效率高,对噪声和杂波有很强的鲁棒性,可以快速准确地捕捉和量化运输模式的趋势。在对一系列图像序列进行评估时,与耗时的手动分析相比,该方法检测颗粒运动事件的召回率为 94%,准确率为 82%。此外,我们进行了一项研究来评估速度分析的效果,分析氧化应激对颗粒运输的影响,其中全自动分析正确地复制了手动分析产生的生物学结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验