Su Bodan, Wang Anqi, Xie Daoxin, Shan Xiaoyi
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Plant Methods. 2023 Jul 8;19(1):70. doi: 10.1186/s13007-023-01047-5.
The plasma membrane (PM) proteins function in a highly dynamic state, including protein trafficking and protein homeostasis, to regulate various biological processes. The dwell time and colocalization of PM proteins are considered to be two important dynamic features determining endocytosis and protein interactions, respectively. Dwell-time and colocalization detected using traditional fluorescence microscope techniques are often misestimated due to bulk measurement. In particular, analyzing these two features of PM proteins at the single-molecule level with spatiotemporal continuity in plant cells remains greatly challenging.
We developed a single molecular (SM) kymograph method, which is based on variable angle-total internal reflection fluorescence microscopy (VA-TIRFM) observation and single-particle (co-)tracking (SPT) analysis, to accurately analyze the dwell time and colocalization of PM proteins in a spatial and temporal manner. Furthermore, we selected two PM proteins with distinct dynamic behaviors, including AtRGS1 (Arabidopsis regulator of G protein signaling 1) and AtREM1.3 (Arabidopsis remorin 1.3), to analyze their dwell time and colocalization upon jasmonate (JA) treatment by SM kymography. First, we established new 3D (2D+t) images to view all trajectories of the interest protein by rotating these images, and then we chose the appropriate point without changing the trajectory for further analysis. Upon JA treatment, the path lines of AtRGS1-YFP appeared curved and short, while the horizontal lines of mCherry-AtREM1.3 demonstrated limited changes, indicating that JA might initiate the endocytosis of AtRGS1. Analysis of transgenic seedlings coexpressing AtRGS1-YFP/mCherry-AtREM1.3 revealed that JA induces a change in the trajectory of AtRGS1-YFP, which then merges into the kymography line of mCherry-AtREM1.3, implying that JA increases the colocalization degree between AtRGS1 and AtREM1.3 on the PM. These results illustrate that different types of PM proteins exhibit specific dynamic features in line with their corresponding functions.
The SM-kymograph method provides new insight into quantitively analyzing the dwell time and correlation degree of PM proteins at the single-molecule level in living plant cells.
质膜(PM)蛋白在高度动态的状态下发挥作用,包括蛋白质运输和蛋白质稳态,以调节各种生物学过程。PM蛋白的驻留时间和共定位分别被认为是决定内吞作用和蛋白质相互作用的两个重要动态特征。使用传统荧光显微镜技术检测的驻留时间和共定位由于整体测量往往被错误估计。特别是,在植物细胞中以时空连续性在单分子水平分析PM蛋白的这两个特征仍然极具挑战性。
我们开发了一种单分子(SM)波形图方法,该方法基于可变角度全内反射荧光显微镜(VA-TIRFM)观察和单粒子(共)追踪(SPT)分析,以时空方式准确分析PM蛋白的驻留时间和共定位。此外,我们选择了两种具有不同动态行为的PM蛋白,包括拟南芥G蛋白信号调节因子1(AtRGS1)和拟南芥类remorin蛋白1.3(AtREM1.3),通过SM波形图分析它们在茉莉酸(JA)处理后的驻留时间和共定位。首先,我们建立了新的3D(2D+t)图像以通过旋转这些图像查看感兴趣蛋白的所有轨迹,然后我们在不改变轨迹的情况下选择合适的点进行进一步分析。在JA处理后,AtRGS1-YFP的路径线出现弯曲且较短,而mCherry-AtREM1.3的水平线显示变化有限,表明JA可能启动AtRGS1的内吞作用。对共表达AtRGS1-YFP/mCherry-AtREM1.3的转基因幼苗进行分析发现,JA诱导AtRGS1-YFP轨迹发生变化,然后融入mCherry-AtREM1.3的波形图线,这意味着JA增加了AtRGS1和AtREM1.3在质膜上的共定位程度。这些结果表明不同类型的PM蛋白根据其相应功能表现出特定的动态特征。
SM波形图方法为在活植物细胞中在单分子水平定量分析PM蛋白的驻留时间和相关程度提供了新的见解。