Suppr超能文献

一种用于高通量拟合剂量反应曲线数据的网格算法。

A grid algorithm for high throughput fitting of dose-response curve data.

作者信息

Wang Yuhong, Jadhav Ajit, Southal Noel, Huang Ruili, Nguyen Dac-Trung

机构信息

National Institutes of Health, NIH Chemical Genomics Center, 9800 Medical Center Drive, Rockville, MD 20850, USA.

出版信息

Curr Chem Genomics. 2010 Oct 21;4:57-66. doi: 10.2174/1875397301004010057.

Abstract

We describe a novel algorithm, Grid algorithm, and the corresponding computer program for high throughput fitting of dose-response curves that are described by the four-parameter symmetric logistic dose-response model. The Grid algorithm searches through all points in a grid of four dimensions (parameters) and finds the optimum one that corresponds to the best fit. Using simulated dose-response curves, we examined the Grid program's performance in reproducing the actual values that were used to generate the simulated data and compared it with the DRC package for the language and environment R and the XLfit add-in for Microsoft Excel. The Grid program was robust and consistently recovered the actual values for both complete and partial curves with or without noise. Both DRC and XLfit performed well on data without noise, but they were sensitive to and their performance degraded rapidly with increasing noise. The Grid program is automated and scalable to millions of dose-response curves, and it is able to process 100,000 dose-response curves from high throughput screening experiment per CPU hour. The Grid program has the potential of greatly increasing the productivity of large-scale dose-response data analysis and early drug discovery processes, and it is also applicable to many other curve fitting problems in chemical, biological, and medical sciences.

摘要

我们描述了一种新颖的算法——网格算法,以及相应的计算机程序,用于对由四参数对称逻辑剂量反应模型描述的剂量反应曲线进行高通量拟合。网格算法在四维(参数)网格中的所有点上进行搜索,并找到对应最佳拟合的最优值。我们使用模拟的剂量反应曲线,检验了网格程序在重现用于生成模拟数据的实际值方面的性能,并将其与用于R语言和环境的DRC软件包以及用于微软Excel的XLfit插件进行了比较。网格程序很稳健,对于有噪声或无噪声的完整和部分曲线,都能持续恢复实际值。DRC和XLfit在无噪声数据上表现良好,但它们对噪声敏感,随着噪声增加其性能迅速下降。网格程序是自动化的,可扩展到数百万条剂量反应曲线,并且每CPU小时能够处理来自高通量筛选实验的100,000条剂量反应曲线。网格程序有潜力极大地提高大规模剂量反应数据分析和早期药物发现过程的效率,并且它也适用于化学、生物学和医学科学中的许多其他曲线拟合问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验