Suppr超能文献

脑电图阿尔法纺锤波可作为实际交通条件下驾驶员疲劳的指标。

EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.

机构信息

Daimler AG, Research and Development, HPC H602, Leibnizstr. 2, 71032 Böblingen, Germany.

出版信息

Clin Neurophysiol. 2011 Jun;122(6):1168-78. doi: 10.1016/j.clinph.2010.10.044. Epub 2011 Feb 17.

Abstract

OBJECTIVE

The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions.

METHODS

An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving.

RESULTS

Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters.

CONCLUSIONS

EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power.

SIGNIFICANCE

It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions.

摘要

目的

本研究旨在展示 EEG 阿尔法纺锤波(由阿尔法频段中的短暂窄带爆发定义)作为评估驾驶员在实际驾驶条件下疲劳的客观指标的有效性。

方法

描述了一种用于识别阿尔法纺锤波的算法。基于模拟数据测试了算法的性能。该方法应用于在实际交通条件下记录的真实数据,并与传统 EEG 疲劳测量(即阿尔法频带功率)的性能进行了比较。作为高度有效的疲劳参考,与初始 20 分钟的驾驶相比,使用因严重疲劳而终止驾驶的参与者的最后 20 分钟的驾驶数据。

结果

统计分析显示,从第一到最后一个驾驶段,几个阿尔法纺锤波参数显著增加,在所有传统 EEG 频带中,只有阿尔法频带功率增加;基于阿尔法纺锤波的测量值具有更大的效应量。与没有终止驾驶的参与者相比,在同一时间段内,因疲劳而退出的参与者的疲劳程度仅通过阿尔法纺锤波参数观察到。

结论

与 EEG 阿尔法频带功率相比,EEG 阿尔法纺锤波参数提高了疲劳检测的灵敏度和特异性。

意义

证明在实际交通条件下,阿尔法纺锤波在评估驾驶员疲劳方面优于 EEG 频带功率测量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验