Suppr超能文献

使用流量-容积曲线对肺部系统疾病模式进行分类。

Classification of pulmonary system diseases patterns using flow-volume curve.

作者信息

Arabalibeik Hossein, Jafari Samaneh, Agin Khosro

机构信息

Research Center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Stud Health Technol Inform. 2011;163:25-30.

Abstract

Spirometry is the most common pulmonary function test. It provides useful information for early detection of respiratory system abnormalities. While decision support systems use normally calculated parameters such as FEV1, FVC, and FEV1% to diagnose the pattern of respiratory system diseases, expert physicians pay close attention to the pattern of the flow-volume curve as well. Fisher discriminant analysis shows that coefficients of a simple polynomial function fitted to the curve, can capture the information about the disease patterns much better than the familiar single point parameters. A neural network then can classify the abnormality pattern as restrictive, obstructive, mixed, or normal. Using the data from 205 adult volunteers, total accuracy, sensitivity and specificity for four categories are 97.6%, 97.5% and 98.8% respectively.

摘要

肺量测定法是最常见的肺功能测试。它为呼吸系统异常的早期检测提供有用信息。虽然决策支持系统通常使用诸如第一秒用力呼气容积(FEV1)、用力肺活量(FVC)和FEV1%等计算参数来诊断呼吸系统疾病模式,但专家医生也密切关注流量-容积曲线的模式。费舍尔判别分析表明,拟合到该曲线的简单多项式函数的系数,比熟悉的单点参数能更好地捕捉有关疾病模式的信息。然后,神经网络可以将异常模式分类为限制性、阻塞性、混合性或正常。使用来自205名成年志愿者的数据,四类的总准确率、敏感性和特异性分别为97.6%、97.5%和98.8%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验