Division of Material Science, Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi, Japan.
J Comput Chem. 2011 Apr 15;32(5):778-86. doi: 10.1002/jcc.21653. Epub 2010 Nov 4.
This study describes the framework of the quantum mechanical (QM)/Monte Carlo (MC)/free-energy perturbation (FEP) method, a FEP method based on MC simulations using quantum chemical calculations. Because a series of structures generated by interpolating internal coordinates between transition state and reactant did not produce smooth free-energy profiles, we used structures from the intrinsic reaction coordinate calculations. This method was first applied to the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene and produced ΔG( sol)‡ values of 20.1 and 21.4 kcal mol(-1) in aqueous and methanol solutions, respectively. They are very consistent with the experimentally observed values. The other two applications were the free-energy surfaces for the Cope elimination of N,N-dimethyl-3-phenylbutan-2-amine oxide in aqueous, dimethyl sulfoxide, and tetrahydrofuran solutions, and the Kemp decarboxylation of 6-hydroxybenzo-isoxazole-3-carboxylic acid in aqueous, dimethyl sulfoxide, and CH(3) CN solutions. The calculated activation free energies differed by less than 1.8 kcal mol(-1) from the experimental values for these reactions. Although we used droplet models for the QM/MC/FEP simulations, the calculated results for three reactions are very close to the experimental data. It was confirmed that most of the interactions between the solute and solvents can be described using small numbers of solvent molecules. This is because a few solvent molecules can produce large portions of the solute-solvent interaction energies at the reaction centers. When we confirmed the dependency on the droplet sizes of solvents, the QM/MC/FEP for a large droplet with 106 water molecules produced a ΔG (sol)‡ value similar to the experimental values, as well as that for a small droplet with 34 molecules.
本研究描述了量子力学(QM)/蒙特卡罗(MC)/自由能微扰(FEP)方法的框架,这是一种基于 MC 模拟的 FEP 方法,使用量子化学计算。由于通过在过渡态和反应物之间内坐标插值生成的一系列结构没有产生平滑的自由能曲线,因此我们使用了内坐标反应轨道计算得到的结构。该方法首先应用于甲基乙烯基酮和环戊二烯之间的 Diels-Alder 反应,分别在水溶液和甲醇溶液中得到 ΔG( sol)‡值为 20.1 和 21.4 kcal mol(-1)。这些值与实验观察值非常一致。另外两个应用是在水溶液、二甲亚砜和四氢呋喃溶液中 N,N-二甲基-3-苯基丁-2-胺氧化物的 Cope 消除,以及在水溶液、二甲亚砜和 CH(3)CN 溶液中 6-羟基苯并异噁唑-3-羧酸的 Kemp 脱羧反应的自由能面。这些反应的计算活化自由能与实验值相差不到 1.8 kcal mol(-1)。尽管我们在 QM/MC/FEP 模拟中使用了液滴模型,但这三个反应的计算结果与实验数据非常接近。这证实了对于溶质和溶剂之间的大多数相互作用,可以使用少量的溶剂分子来描述。这是因为在反应中心,少量的溶剂分子可以产生溶质-溶剂相互作用能的大部分。当我们确认溶剂液滴大小的依赖性时,具有 106 个水分子的大液滴的 QM/MC/FEP 产生了与实验值相似的 ΔG (sol)‡值,以及具有 34 个分子的小液滴的结果。